In this work,the Fukui functions of the two ~2P resonance states of Be,a ~2P resonance state of Mg~–,and a ~2D resonance state of Ca~– have been determined.The trajectories of these resonance states,in conjunction w...In this work,the Fukui functions of the two ~2P resonance states of Be,a ~2P resonance state of Mg~–,and a ~2D resonance state of Ca~– have been determined.The trajectories of these resonance states,in conjunction with the complex rotation of the Hamiltonian,were used to determine their wave functions.The electron densities,Fukui functions,and values of the hyper-radius<r^2>were computed from these wave functions.The Fukui functions have negative regions in the valence shell in addition to the inner shell regions,indicating screening effects of the outer temporary electron.Selected configuration interactions with up to quadruple excitations were used along the trajectories and for computing the final wave function.Based on this data,the densities,Fukui functions,and<r^2>were calculated.展开更多
Vehicular traffic is a hard problem in big cities. Internal combustion vehicles are the main fossil fuel consumers and frame the main source of urban air pollutants, such as particulate matter, nitrogen oxides, and vo...Vehicular traffic is a hard problem in big cities. Internal combustion vehicles are the main fossil fuel consumers and frame the main source of urban air pollutants, such as particulate matter, nitrogen oxides, and volatile organic compounds. Vehicular traffic is also a promoter of climate change due to its greenhouse gas emissions, such as CO and CO2. Awareness of the spatiotemporal distribution of urban traffic, including the velocity distribution, allows knowing the spatiotemporal distribution of the air pollutant vehicular emissions required to understand urban air pollution. Although no well-established traffic theory exists, some models and approaches, like cellular automata, have been proposed to study the main aspects of this phenomenon. In this paper, a simple approach for estimating the space-time distribution of the air pollutant emission rates in traffic cellular automata is proposed. It is discussed with the Fukui-Ishibashi (FI) and Nagel-Schreckenberg (NS) models for traffic flow of identical vehicles in a single lane. We obtained the steady-state emission rates of the FI and NS models, being larger those produced by the first one, with relative differences of up to 45% in hydrocarbons, 56% in carbon monoxide, and 77% in nitrogen oxides.展开更多
Multi-scale quantum-mechanical/molecular-mechanical(QM/MM) and large-scale QM simulation provide valuable insight into enzyme mechanism and structure-property relationships. Analysis of the electron density afforded t...Multi-scale quantum-mechanical/molecular-mechanical(QM/MM) and large-scale QM simulation provide valuable insight into enzyme mechanism and structure-property relationships. Analysis of the electron density afforded through these methods can enhance our understanding of how the enzyme environment modulates reactivity at the enzyme active site. From this perspective, tools from conceptual density functional theory to interrogate electron densities can provide added insight into enzyme function. We recently introduced the highly parallelizable Fukui shift analysis(FSA) method, which identifies how frontier states of an active site are altered by the presence of an additional QM residue to identify when QM treatment of a residue is essential as a result of quantum-mechanically affecting the behavior of the active site. We now demonstrate and analyze distance and residue dependence of Fukui function shifts in pairs of residues representing different non-covalent interactions. We also show how the interpretation of the Fukui function as a measure of relative nucleophilicity provides insight into enzymes that carry out S_N2 methyl transfer. The FSA method represents a promising approach for the systematic, unbiased determination of quantum mechanical effects in enzymes and for other complex systems that necessitate multi-scale modeling.展开更多
In this study,nickel foam-loaded Mn and Ce bimetallic oxide composites were successfully synthesized as particle electrodes by a hydrothermal method and synergized with ozone for the efficient degradation of alizarin ...In this study,nickel foam-loaded Mn and Ce bimetallic oxide composites were successfully synthesized as particle electrodes by a hydrothermal method and synergized with ozone for the efficient degradation of alizarin red(AR),a typical anthraquinone dye.The effects of common factors on the degradation rate of alizarin red were investigated.The optimal experimental conditions were derived as applied voltage=3.5 V,initial pH=5.5,NaCl concentration of 4.5 g/L,and initial dye concentration of 20 mg/L.The particle electrode had a high cyclic stability after five cycles.The active sites of the dye molecular structure were analyzed in combination with the Fukui function,and the degradation pathway of alizarin red was proposed on this basis.By comparing the degradation effect of alizarin red under three different systems of O3,3DER and 3DER-O3,it was confirmed that the three-dimensional electrode has a good synergistic effect in conjunction with ozone.Finally,the degradation mechanism of alizarin red under the CeO_(2)-MnO_(2)/NF synergistic ozone system was derived,in which the single linear oxygen(1O_(2))played a major role in the degradation process.展开更多
Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the cry...Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the crystals of both compounds by using Ab initio method to calculate the structures of their individual molecules as well as their lattice structures and particularly calculating Nuclear Fukui function to gain insight into the sensitivity of the initial, rate-determining step of their decomposition. Our results indicate that TATP and DADP crystal structures exhibit significantly different electronic proper- ties. Most notably, the electronic structure of the TATP crystal shows asymmetry among its reactive oxygen atoms as supported by magnitudes of their nuclear Fukui functions. The greater explosion sensitivity of crystalline TATP may be attributed to the properties of its electronic structure. The electronic calculations provided valuable insight into the decomposition sensitivity difference between TATP and DADP crystals.展开更多
基金supported by the National Natural Science Foundation of China(21483083,21133005)the Natural Science Foundation of Liaoning Province,China(2014020150)~~
文摘In this work,the Fukui functions of the two ~2P resonance states of Be,a ~2P resonance state of Mg~–,and a ~2D resonance state of Ca~– have been determined.The trajectories of these resonance states,in conjunction with the complex rotation of the Hamiltonian,were used to determine their wave functions.The electron densities,Fukui functions,and values of the hyper-radius<r^2>were computed from these wave functions.The Fukui functions have negative regions in the valence shell in addition to the inner shell regions,indicating screening effects of the outer temporary electron.Selected configuration interactions with up to quadruple excitations were used along the trajectories and for computing the final wave function.Based on this data,the densities,Fukui functions,and<r^2>were calculated.
文摘Vehicular traffic is a hard problem in big cities. Internal combustion vehicles are the main fossil fuel consumers and frame the main source of urban air pollutants, such as particulate matter, nitrogen oxides, and volatile organic compounds. Vehicular traffic is also a promoter of climate change due to its greenhouse gas emissions, such as CO and CO2. Awareness of the spatiotemporal distribution of urban traffic, including the velocity distribution, allows knowing the spatiotemporal distribution of the air pollutant vehicular emissions required to understand urban air pollution. Although no well-established traffic theory exists, some models and approaches, like cellular automata, have been proposed to study the main aspects of this phenomenon. In this paper, a simple approach for estimating the space-time distribution of the air pollutant emission rates in traffic cellular automata is proposed. It is discussed with the Fukui-Ishibashi (FI) and Nagel-Schreckenberg (NS) models for traffic flow of identical vehicles in a single lane. We obtained the steady-state emission rates of the FI and NS models, being larger those produced by the first one, with relative differences of up to 45% in hydrocarbons, 56% in carbon monoxide, and 77% in nitrogen oxides.
文摘Multi-scale quantum-mechanical/molecular-mechanical(QM/MM) and large-scale QM simulation provide valuable insight into enzyme mechanism and structure-property relationships. Analysis of the electron density afforded through these methods can enhance our understanding of how the enzyme environment modulates reactivity at the enzyme active site. From this perspective, tools from conceptual density functional theory to interrogate electron densities can provide added insight into enzyme function. We recently introduced the highly parallelizable Fukui shift analysis(FSA) method, which identifies how frontier states of an active site are altered by the presence of an additional QM residue to identify when QM treatment of a residue is essential as a result of quantum-mechanically affecting the behavior of the active site. We now demonstrate and analyze distance and residue dependence of Fukui function shifts in pairs of residues representing different non-covalent interactions. We also show how the interpretation of the Fukui function as a measure of relative nucleophilicity provides insight into enzymes that carry out S_N2 methyl transfer. The FSA method represents a promising approach for the systematic, unbiased determination of quantum mechanical effects in enzymes and for other complex systems that necessitate multi-scale modeling.
基金supported by the Postgraduate Innovation Fund Project by Southwest University of Science and Technology(No.24ycx2059)the National Natural Science Foundation of China(Nos.41831285 and 51974261).
文摘In this study,nickel foam-loaded Mn and Ce bimetallic oxide composites were successfully synthesized as particle electrodes by a hydrothermal method and synergized with ozone for the efficient degradation of alizarin red(AR),a typical anthraquinone dye.The effects of common factors on the degradation rate of alizarin red were investigated.The optimal experimental conditions were derived as applied voltage=3.5 V,initial pH=5.5,NaCl concentration of 4.5 g/L,and initial dye concentration of 20 mg/L.The particle electrode had a high cyclic stability after five cycles.The active sites of the dye molecular structure were analyzed in combination with the Fukui function,and the degradation pathway of alizarin red was proposed on this basis.By comparing the degradation effect of alizarin red under three different systems of O3,3DER and 3DER-O3,it was confirmed that the three-dimensional electrode has a good synergistic effect in conjunction with ozone.Finally,the degradation mechanism of alizarin red under the CeO_(2)-MnO_(2)/NF synergistic ozone system was derived,in which the single linear oxygen(1O_(2))played a major role in the degradation process.
基金This research was supported by NSF (DMR- 0449633). PPZ thanks the financial support by the National Natural Science Foundation of China (Grant No. 21403097) and the Fundamental Research Funds for the Central Universities (lzujbky-2014-182). The authors would like to thank Dr. Shaoxin Feng for his technical supports on this project. TL also thanks Dr. Shubin Liu (UNC) for sharing his insights on DFT.
文摘Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the crystals of both compounds by using Ab initio method to calculate the structures of their individual molecules as well as their lattice structures and particularly calculating Nuclear Fukui function to gain insight into the sensitivity of the initial, rate-determining step of their decomposition. Our results indicate that TATP and DADP crystal structures exhibit significantly different electronic proper- ties. Most notably, the electronic structure of the TATP crystal shows asymmetry among its reactive oxygen atoms as supported by magnitudes of their nuclear Fukui functions. The greater explosion sensitivity of crystalline TATP may be attributed to the properties of its electronic structure. The electronic calculations provided valuable insight into the decomposition sensitivity difference between TATP and DADP crystals.