In precise fuel circuit systems, the filtration of particulate impurities seriously affects the efficiency and service life of various components. For filtration process intensification of high-pressure fuel laser per...In precise fuel circuit systems, the filtration of particulate impurities seriously affects the efficiency and service life of various components. For filtration process intensification of high-pressure fuel laser perforated filters, the two-phase flow characteristics in filters is studied. The size, position and number of filtration holes are taken as optimization variables, and take the filtration efficiency and flow pressure drop as optimization objectives. Computational fluid dynamics (CFD) is used to simulate the two-phase motion of continuous phase and discrete particles in a periodic unit. Artificial neural networks (ANN) are utilized for objectives prediction, and the NSGA-II genetic algorithm is employed for multi-objective optimization, resulting in the Pareto front solution set. Furtherly, the reasonable solution is selected by introducing TOPSIS to ensure that two optimization indexes are relatively smaller and balanced. The optimized filter element scheme allows the filter to have a pressure drop of less than 3.2 MPa under high pressure and a filtration efficiency of over 80% for spherical particle impurities with a diameter of 5 μm or more.展开更多
Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance o...Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12 months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%–1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23–560 nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency.展开更多
The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type...The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.展开更多
基金supported by the Natural Science Basic Research Program of Shaanxi(grant No.2024JC-JCQN-48)the Project of Shaanxi Innovative Talent Promotion Plan-Technology Innovation Team(grant No.2024RS-CXTD-35).
文摘In precise fuel circuit systems, the filtration of particulate impurities seriously affects the efficiency and service life of various components. For filtration process intensification of high-pressure fuel laser perforated filters, the two-phase flow characteristics in filters is studied. The size, position and number of filtration holes are taken as optimization variables, and take the filtration efficiency and flow pressure drop as optimization objectives. Computational fluid dynamics (CFD) is used to simulate the two-phase motion of continuous phase and discrete particles in a periodic unit. Artificial neural networks (ANN) are utilized for objectives prediction, and the NSGA-II genetic algorithm is employed for multi-objective optimization, resulting in the Pareto front solution set. Furtherly, the reasonable solution is selected by introducing TOPSIS to ensure that two optimization indexes are relatively smaller and balanced. The optimized filter element scheme allows the filter to have a pressure drop of less than 3.2 MPa under high pressure and a filtration efficiency of over 80% for spherical particle impurities with a diameter of 5 μm or more.
基金financially supported by Egged Israel Transport Cooperative Society Ltd.
文摘Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12 months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%–1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23–560 nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency.
基金Supported by National Natural Science Foundation of China(Grant No.51076014)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20101101110011)
文摘The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.