Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmissi...Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.展开更多
Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of ac...Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of active sites were observed in palladium-cerium oxide system, attributing to the co-action of Pd-cerium oxide interface and Pd sites alone, by CO stripping technique, a structure-sensitive process generally employed to probe the active sites. Active sites resulting from the nanostructured interfacial contact of Pd and cerium oxide were confirmed by high resolution transmission electron microscopy and electrochemical CO stripping approaches. Electrochemical measurements of cyclic voltammetry and chronometry results demonstrated that Pd-cerium oxide catalysts exhibited much higher catalytic performances for alcohols oxidation than Pd alone in terms of activity, stability and anti-poisoning ability.The improved performance was probably attributed to the nanostructured active interface in which the catalytic ability from each component can be maximized through the synergistic action of bi-functional mechanism and electronic effect. The calculated catalytic efficiency of such active sites was many times higher than that of the Pd active sites alone. The present work showed the significance of valid nanostructured interface design and fabrication in the advanced catalysis system.展开更多
Direct alcohol fuel cells(DAFCs)have received wide attention as a new type of clean energy device because of their high energy conversion efficiency,portability,non-toxicity and pollution-free.Anode catalysts are the ...Direct alcohol fuel cells(DAFCs)have received wide attention as a new type of clean energy device because of their high energy conversion efficiency,portability,non-toxicity and pollution-free.Anode catalysts are the key factors affecting the performance of DAFCs.Recently studies show that using the optical activity of semiconductor materials as the carriers of traditional precious metal electrocatalysts,under the illumination of light sources,can greatly improve the electrocatalytic activity and stability of electrodes.In this review,the research progress of photo-responsive metal/semiconductor hybrids as the electrocatalysts for DAFCs in recent years is summarized,including:(1)Mechanism and advantages of photo-assistant electrochemical alcohol oxidation reaction,(2)me tal/semiconductor electrocatalyst for the different type of fuel cell reactions,(3)different kind of metals in photo-responsive metal/semiconductor hybrid nanostructure,(4)the personal prospects of the photo-responsive metal/semiconductor electrode for future application in DAFCs.展开更多
Ni/Carbon was prepared in two steps: initially cellulose as carbon source and NiCl2·6H2O as catalyst of the carbonization process were submitted to hydrothermal treatment at 200 ℃ and further to thermal treatme...Ni/Carbon was prepared in two steps: initially cellulose as carbon source and NiCl2·6H2O as catalyst of the carbonization process were submitted to hydrothermal treatment at 200 ℃ and further to thermal treatment at 900 ℃ under argon atmosphere. The obtained material contains Ni nanoparticles with face-centered cubic (fcc) structure dispersed on amorphous carbon with graphitic domains. PtRu/C electrocatalysts (carbon- supported PtRu nanoparticles) were prepared by an alcohol-reduction process using Ni/Carbon as support. The materials were characterized by thermogravimetric analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and tested as anodes in single direct methanol fuel cell (DMFC). The performances of PtRu/C electrocatalysts using Ni/Carbon as support were superior to those obtained for PtRu/C using commercial carbon black Vulcan XC72 as support.展开更多
基金supported by the MATTM (Italy) for the PIRODE Project No 94the MSE for the PRIT Project Industria 2015the MIUR (Italy) for the FIRB 2010 Project RBFR10J4H7 002 and HYDROLAB2
文摘Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.
基金supported by the National Natural Science Foundation of China (21603041)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of active sites were observed in palladium-cerium oxide system, attributing to the co-action of Pd-cerium oxide interface and Pd sites alone, by CO stripping technique, a structure-sensitive process generally employed to probe the active sites. Active sites resulting from the nanostructured interfacial contact of Pd and cerium oxide were confirmed by high resolution transmission electron microscopy and electrochemical CO stripping approaches. Electrochemical measurements of cyclic voltammetry and chronometry results demonstrated that Pd-cerium oxide catalysts exhibited much higher catalytic performances for alcohols oxidation than Pd alone in terms of activity, stability and anti-poisoning ability.The improved performance was probably attributed to the nanostructured active interface in which the catalytic ability from each component can be maximized through the synergistic action of bi-functional mechanism and electronic effect. The calculated catalytic efficiency of such active sites was many times higher than that of the Pd active sites alone. The present work showed the significance of valid nanostructured interface design and fabrication in the advanced catalysis system.
基金the National Natural Science Foundation of China(Nos.21603111,51702173)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515020038)the Pearl River Talent Recruitment Program of Guangdong Province(No.2019QN01L148)。
文摘Direct alcohol fuel cells(DAFCs)have received wide attention as a new type of clean energy device because of their high energy conversion efficiency,portability,non-toxicity and pollution-free.Anode catalysts are the key factors affecting the performance of DAFCs.Recently studies show that using the optical activity of semiconductor materials as the carriers of traditional precious metal electrocatalysts,under the illumination of light sources,can greatly improve the electrocatalytic activity and stability of electrodes.In this review,the research progress of photo-responsive metal/semiconductor hybrids as the electrocatalysts for DAFCs in recent years is summarized,including:(1)Mechanism and advantages of photo-assistant electrochemical alcohol oxidation reaction,(2)me tal/semiconductor electrocatalyst for the different type of fuel cell reactions,(3)different kind of metals in photo-responsive metal/semiconductor hybrid nanostructure,(4)the personal prospects of the photo-responsive metal/semiconductor electrode for future application in DAFCs.
基金CNP_q,FAPESPFINEP-MCT-ProH_2 for financial support
文摘Ni/Carbon was prepared in two steps: initially cellulose as carbon source and NiCl2·6H2O as catalyst of the carbonization process were submitted to hydrothermal treatment at 200 ℃ and further to thermal treatment at 900 ℃ under argon atmosphere. The obtained material contains Ni nanoparticles with face-centered cubic (fcc) structure dispersed on amorphous carbon with graphitic domains. PtRu/C electrocatalysts (carbon- supported PtRu nanoparticles) were prepared by an alcohol-reduction process using Ni/Carbon as support. The materials were characterized by thermogravimetric analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and tested as anodes in single direct methanol fuel cell (DMFC). The performances of PtRu/C electrocatalysts using Ni/Carbon as support were superior to those obtained for PtRu/C using commercial carbon black Vulcan XC72 as support.