在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to ...在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to +∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to +∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to +∞(dx) integral from α to +∞(|f(x,y)|dy),integral from α to +∞(dy) integral from a to +∞(|f(x,y)dx)至少有一个存在(有限)。展开更多
对于定义在矩形I={(x,y),a≤x≤b,c≤y≤d}上的连续函数f(x,y),我们有古典的公式:integral from I f(x,y)dxdy=ingetral from a to b[ingetral from c to d f(x,y)dy]dx=integral from a to b f(x,y)dx]dy。本文推广累次积分公式,给出...对于定义在矩形I={(x,y),a≤x≤b,c≤y≤d}上的连续函数f(x,y),我们有古典的公式:integral from I f(x,y)dxdy=ingetral from a to b[ingetral from c to d f(x,y)dy]dx=integral from a to b f(x,y)dx]dy。本文推广累次积分公式,给出完全测度空间上的Fubini 定理。给定两个测度空间(X,(?),μ),(y,(?),v),称X×Y 中集A×B 为矩形,若A∈(?),B∈(?),展开更多
We prove some results displaying the relationship between Fubini product of ideals and its factor ideals, and study a partial order using the cardinal invariant of the continuum. The relationships among transitive car...We prove some results displaying the relationship between Fubini product of ideals and its factor ideals, and study a partial order using the cardinal invariant of the continuum. The relationships among transitive cardinal invariants of abelian group are also investigated.展开更多
We prove a general version of the stochastic Fubini theorem for stochastic integrals of Banach space valued processes with respect to compensated Poisson random measures under weak integrability assumptions, which ext...We prove a general version of the stochastic Fubini theorem for stochastic integrals of Banach space valued processes with respect to compensated Poisson random measures under weak integrability assumptions, which extends this classical result from Hilbert space setting to Banach space setting.展开更多
基金Supported by the National Natural Science Foundation of China(11061032)the Fundamental Research Funds for Central Universities HUST(2011QN172)the Hubei Normal University(ZD201118)
基金support of NSF grants(11471105)of China NSF grants(2016CFB526)of Hubei Province Innovation Team of the Educational Department of Hubei Province(T201412)
文摘在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to +∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to +∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to +∞(dx) integral from α to +∞(|f(x,y)|dy),integral from α to +∞(dy) integral from a to +∞(|f(x,y)dx)至少有一个存在(有限)。
文摘对于定义在矩形I={(x,y),a≤x≤b,c≤y≤d}上的连续函数f(x,y),我们有古典的公式:integral from I f(x,y)dxdy=ingetral from a to b[ingetral from c to d f(x,y)dy]dx=integral from a to b f(x,y)dx]dy。本文推广累次积分公式,给出完全测度空间上的Fubini 定理。给定两个测度空间(X,(?),μ),(y,(?),v),称X×Y 中集A×B 为矩形,若A∈(?),B∈(?),
基金supported by National Natural Science Foundation of China (Grant No.10671134)
文摘We prove some results displaying the relationship between Fubini product of ideals and its factor ideals, and study a partial order using the cardinal invariant of the continuum. The relationships among transitive cardinal invariants of abelian group are also investigated.
基金Supported by NNSFC(Grant Nos.11571147,11822106 and 11831014)NSF of Jiangsu Province(Grant No.BK20160004)the PAPD of Jiangsu Higher Education Institutions。
文摘We prove a general version of the stochastic Fubini theorem for stochastic integrals of Banach space valued processes with respect to compensated Poisson random measures under weak integrability assumptions, which extends this classical result from Hilbert space setting to Banach space setting.