Fruitlet Core Rot (FCR) is one of the major postharvest diseases of pineapple (<i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;...Fruitlet Core Rot (FCR) is one of the major postharvest diseases of pineapple (<i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;"> var. </span><i><span style="font-family:Verdana;">comosus</span></i><span style="font-family:Verdana;">), especially on the prone variety Queen Victoria cultivated in Reunion Island. This aggressive disease is generally due to two pathogens: </span><i><span style="font-family:Verdana;">Fusarium ananatum</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Thalaromyces stolii</span></i><span style="font-family:Verdana;">, and needs to be controlled during postharvest. In Reunion Island, </span><i><span style="font-family:Verdana;">F. ananatum</span></i><span style="font-family:Verdana;"> is the principal causal agent impacting fruit exportation. Fruit produced for the export market is generally treated with chemicals. This type of postharvest treatment is not in line with consumer expectations, as consumers prefer fruits treated with nonharmful and natural products. The objective of this work was to study alternative postharvest treatments using the fungitoxic properties of essential oils and their ability to elicit the resistance mechanisms of the fruit. Six EAs were tested </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> on mycelial growth of </span><i><span style="font-family:Verdana;">F. ananatum</span></i><span style="font-family:Verdana;">. Whether by volatilization or included in the culture medium, some essential oils such as thymol, eugenol, geraniol and the carvone/menthol mixture have a strong fungistatic effect. But only thymol has a fungitoxic effect. The thymol, a natural molecule synthesized by thyme (</span><i><span style="font-family:Verdana;">Thymus vulgaris</span></i><span style="font-family:Verdana;"> L. </span><i><span style="font-family:Verdana;">thymoliferum</span></i><span style="font-family:Verdana;">) is the more effective </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">and is the strongest potential to be used in postharvest treatment. Thymol, prepared at 0.025% in a terpene solvent that acts as a penetrating agent, was tested </span><i><span style="font-family:Verdana;">in vivo</span></i><span style="font-family:Verdana;"> with inoculated fruits. The treatment was effective only on necrosis development from the upper part of the fruits. Pineapple polyphenol biosynthesis appears to have been suppressed by thymol treatment. Results and opportunities for this treatment are discussed. Additional experiments must be carried out in order to decide on the advisability of this type of treatment.</span>展开更多
The effects of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets were analyzed.The results showed that ultra-high treatment changed monosaccharide composition...The effects of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets were analyzed.The results showed that ultra-high treatment changed monosaccharide composition,increased total dietary fiber and soluble dietary fiber from pomelo fruitlets,especially at 400 MPa where soluble dietary fiber was greatly increased from 32.49%±0.23%to 41.92%±0.32%as compared to native one(p<0.05).Besides,ultra-high pressure treatment enhanced water-and oil-holding capacity,as well as swelling capacity of dietary fiber,which were related to its more porous structure and hydrophobic groups.Crystallinity and thermal stability of ultra-high pressure modified dietary fibers increased.Moreover,ultra-high pressure modified dietary fibers possessed stronger bile acid binding and pancreatic lipase inhibition capacities,suggesting its better potential in vitro hypolipidemic activity.Our findings suggested that ultra-high pressure treatment is a promising method to obtain dietary fiber with excellent functional properties,and can provide a basis for the high-value utilization of pomelo fruitlets as functional food with blood-lipid regulation.展开更多
文摘Fruitlet Core Rot (FCR) is one of the major postharvest diseases of pineapple (<i><span style="font-family:Verdana;">Ananas comosus</span></i><span style="font-family:Verdana;"> var. </span><i><span style="font-family:Verdana;">comosus</span></i><span style="font-family:Verdana;">), especially on the prone variety Queen Victoria cultivated in Reunion Island. This aggressive disease is generally due to two pathogens: </span><i><span style="font-family:Verdana;">Fusarium ananatum</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Thalaromyces stolii</span></i><span style="font-family:Verdana;">, and needs to be controlled during postharvest. In Reunion Island, </span><i><span style="font-family:Verdana;">F. ananatum</span></i><span style="font-family:Verdana;"> is the principal causal agent impacting fruit exportation. Fruit produced for the export market is generally treated with chemicals. This type of postharvest treatment is not in line with consumer expectations, as consumers prefer fruits treated with nonharmful and natural products. The objective of this work was to study alternative postharvest treatments using the fungitoxic properties of essential oils and their ability to elicit the resistance mechanisms of the fruit. Six EAs were tested </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> on mycelial growth of </span><i><span style="font-family:Verdana;">F. ananatum</span></i><span style="font-family:Verdana;">. Whether by volatilization or included in the culture medium, some essential oils such as thymol, eugenol, geraniol and the carvone/menthol mixture have a strong fungistatic effect. But only thymol has a fungitoxic effect. The thymol, a natural molecule synthesized by thyme (</span><i><span style="font-family:Verdana;">Thymus vulgaris</span></i><span style="font-family:Verdana;"> L. </span><i><span style="font-family:Verdana;">thymoliferum</span></i><span style="font-family:Verdana;">) is the more effective </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">and is the strongest potential to be used in postharvest treatment. Thymol, prepared at 0.025% in a terpene solvent that acts as a penetrating agent, was tested </span><i><span style="font-family:Verdana;">in vivo</span></i><span style="font-family:Verdana;"> with inoculated fruits. The treatment was effective only on necrosis development from the upper part of the fruits. Pineapple polyphenol biosynthesis appears to have been suppressed by thymol treatment. Results and opportunities for this treatment are discussed. Additional experiments must be carried out in order to decide on the advisability of this type of treatment.</span>
基金This work was supported by the National Natural Science Foundation of China(grant number 22038012)Natural Science Foundation of Fujian,China(grant number 2022N3011)+1 种基金Research Foundation of Jimei University(grant number ZQ2020006,ZR2020004)Xiamen Ocean and Fishery Development Special Fund project(grant number 21CZP005HJ07).
文摘The effects of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets were analyzed.The results showed that ultra-high treatment changed monosaccharide composition,increased total dietary fiber and soluble dietary fiber from pomelo fruitlets,especially at 400 MPa where soluble dietary fiber was greatly increased from 32.49%±0.23%to 41.92%±0.32%as compared to native one(p<0.05).Besides,ultra-high pressure treatment enhanced water-and oil-holding capacity,as well as swelling capacity of dietary fiber,which were related to its more porous structure and hydrophobic groups.Crystallinity and thermal stability of ultra-high pressure modified dietary fibers increased.Moreover,ultra-high pressure modified dietary fibers possessed stronger bile acid binding and pancreatic lipase inhibition capacities,suggesting its better potential in vitro hypolipidemic activity.Our findings suggested that ultra-high pressure treatment is a promising method to obtain dietary fiber with excellent functional properties,and can provide a basis for the high-value utilization of pomelo fruitlets as functional food with blood-lipid regulation.