期刊文献+
共找到38,470篇文章
< 1 2 250 >
每页显示 20 50 100
Cell polarization in ischemic stroke: molecular mechanisms and advances 被引量:5
1
作者 Yuanwei Li Xiaoxiao Xu +5 位作者 Xuan Wu Jiarui Li Shiling Chen Danyang Chen Gaigai Li Zhouping Tang 《Neural Regeneration Research》 SCIE CAS 2025年第3期632-645,共14页
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu... Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke. 展开更多
关键词 astrocyte polarization immune regulation inflammation ischemic injury microglia polarization neutrophil polarization signaling pathways STROKE
暂未订购
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
2
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke 被引量:2
3
作者 Shuai Feng Juanji Li +6 位作者 Tingting Liu Shiqi Huang Xiangliang Chen Shen Liu Junshan Zhou Hongdong Zhao Ye Hong 《Neural Regeneration Research》 SCIE CAS 2025年第2期491-502,共12页
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit... Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke. 展开更多
关键词 inflammation ischemia/reperfusion injury ischemic stroke low-density lipoprotein receptor neuroprotective astrocytes neurotoxic astrocytes NLRP3 inflammasome polarization
暂未订购
Pharmacological targeting cGAS/STING/NF-κB axis by tryptanthrin induces microglia polarization toward M2 phenotype and promotes functional recovery in a mouse model of spinal cord injury 被引量:1
4
作者 Ziwei Fan Mengxian Jia +16 位作者 Jian Zhou Zhoule Zhu Yumin Wu Xiaowu Lin Yiming Qian Jiashu Lian Xin Hua Jianhong Dong Zheyu Fang Yuqing Liu Sibing Chen Xiumin Xue Juanqing Yue Minyu Zhu Ying Wang Zhihui Huang Honglin Teng 《Neural Regeneration Research》 SCIE CAS 2025年第11期3287-3301,共15页
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ... The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype. 展开更多
关键词 cGAS/STING functional recovery MICROGLIA neuroinflammation neuroprotection nuclear factor-κB polarization spinal cord injury TRYPTANTHRIN
暂未订购
Enhanced characterization of depolarizing samples using indices of polarization purity and polarizance–reflection–transformation spaces 被引量:1
5
作者 Dekui Li Ivan Montes +5 位作者 Mónica Canabal-Carbia Irene Estévez Octavi Lopez-Coronado Zhongyi Guo Juan Campos Ángel Lizana 《Advanced Photonics Nexus》 2025年第1期77-92,共16页
Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide ra... Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide range of imaging applications for enhanced visualization of structures,target identification,etc.One commonly used tool for depolarizing discrimination is the so-called depolarizing spaces.In this article,we exploit the combined use of two depolarizing spaces,the indices of polarization purity(IPP)and polarizance–reflection–transformation(PRT)spaces,to improve the capability of optical systems to identify polarization–anisotropy depolarizers.The potential of these spaces to discriminate among different depolarizers is first studied from a series of simulations by incoherently adding diattenuations or retarders,with some control parameters emulating samples in nature.The simulated results demonstrate that the proposed methods are capable of increasing differences among depolarizers beyond other well-known techniques.Experimentally,validation is provided by conducting diverse phantom experiments of easy interpretation and mimicking the stated simulations.As a useful application of our approach,we developed a model able to retrieve intrinsic microscopic information of samples from macroscopic polarimetric measurements.The proposed methods enable non-invasive,straightforward,macroscopic characterization of depolarizing samples,and may be of interest for enhanced visualization of samples in multiple imaging scenarios. 展开更多
关键词 DEpolarIZER RETARDER diattenuator polarization space.
在线阅读 下载PDF
Fetal mice dermal mesenchymal stem cells promote wound healing by inducing M2 type macrophage polarization 被引量:3
6
作者 Zhen-Yu Xia Yi Wang +6 位作者 Nian Shi Mei-Qi Lu Yun-Xiang Deng Yong-Jun Qi Xing-Lei Wang Jie Zhao Du-Yin Jiang 《World Journal of Stem Cells》 2025年第2期96-104,共9页
BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds pre... BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds. 展开更多
关键词 Fetal dermal mesenchymal stem cells Macrophage polarization Wound healing IMMUNOMODULATION M2 phenotype
暂未订购
Operando quantitatively analyses of polarizations in all-vanadium flow batteries 被引量:1
7
作者 Zhenyu Wang Jing Sun +8 位作者 Jiadong Shen Zixiao Guo Xiaosa Xu Jin Li Jiayou Ren Yiju Li Tianshuai Wang Xinzhuang Fan Tianshou Zhao 《Journal of Energy Chemistry》 2025年第6期178-184,I0005,共8页
All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential ... All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments. 展开更多
关键词 Vanadium flow battery Quantitative analysis polarization Oxygen functional groups BISMUTH
在线阅读 下载PDF
Advances in integrated polarization detectors with innovative features
8
作者 BU Yong-Hao ZHOU Jing +8 位作者 DENG Jie WANG Ruo-Wen YE Tao SHI Meng-Die HUANG Jun-Wei ZHANG Yu-Jie NING Jun LU Wei CHEN Xiao-Shuang 《红外与毫米波学报》 北大核心 2025年第3期371-383,共13页
The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How... The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors. 展开更多
关键词 integrated polarization detector infinite polarization extinction ratio polarization state change detection full-Stokes multidimensional detection
在线阅读 下载PDF
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption
9
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 Electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
在线阅读 下载PDF
O-linked β-N-acetylglucosamine transferase regulates macrophage polarization in diabetic periodontitis: In vivo and in vitro study 被引量:1
10
作者 Ye-Ke Wu Min Liu +6 位作者 Hong-Ling Zhou Xiang He Jing Wei Wei-Han Hua Hui-Jing Li Qiang-Hua Yuan Yun-Fei Xie 《World Journal of Diabetes》 2025年第3期167-186,共20页
BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transf... BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transferase(OGT),promotes inflammatory responses in diabetic periodontitis(DP).Additionally,p38 mitogen-activated protein kinase regulates macrophage polarization.However,the interplay between OGT,macrophage polarization,and p38 signaling in the progression of DP remains unexplored.AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38.METHODS For in vivo experiments,mice were divided into four groups:Control,DP model,model+short hairpin(sh)RNAnegative control,and model+sh-OGT.Diabetes was induced by streptozotocin,followed by ligation and lipopolysaccharide(LPS)administration to induce periodontitis.The impact of OGT was assessed by injecting sh-OGT lentivirus.Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrateresistant acid phosphatase staining,while macrophage polarization was determined through quantitative real-time polymerase chain reaction(qPCR)and immunohistochemistry.For in vitro experiments,RAW264.7 cells were treated with LPS and high glucose(HG)(25 mmol/L D-glucose)to establish a cell model of DP.OGT was inhibited by OGT inhibitor(OSMI4)treatment and knocked down by sh-OGT transfection.M1/M2 polarization was analyzed using qPCR,immunofluorescence,and flow cytometry.Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting.RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice,associated with elevated O-GlcNAcylation and OGT levels.Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS+HG-induced RAW264.7 cells.Furthermore,LPS+HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells.OGT interacted with p38 to promote its O-GlcNAcylation at residues A28,T241,and T347,as well as its phosphorylation at residue Y221.CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation,thereby promoting M1 to M2 macrophage polarization and mitigating DP.These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP. 展开更多
关键词 Diabetic periodontitis Macrophage polarization O-linkedβ-N-acetylglucosamine O-linkedβ-N-acetylglucosamine transferase P38
暂未订购
Role of macrophage polarization in diabetic foot ulcer healing:A bibliometric study
11
作者 You-Wen Zhang Lei Sun +1 位作者 Yan-Nan Wang Shi-Yu Zhan 《World Journal of Diabetes》 SCIE 2025年第1期169-186,共18页
BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeuti... BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions. 展开更多
关键词 Diabetic foot Wound healing Macrophage polarization Bibliometric analysis Research cooperation Research trend
暂未订购
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
12
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury
13
作者 Mengshi Yang Miao Bai +10 位作者 Yuan Zhuang Shenghua Lu Qianqian Ge Hao Li Yu Deng Hongbin Wu Xiaojian Xu Fei Niu Xinlong Dong Bin Zhang Baiyun Liu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2611-2623,共13页
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i... Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway. 展开更多
关键词 apoptosis BV2 microglia DEXAMETHASONE glucocorticoid receptor GLUCOCORTICOIDS innate immune system microglial polarization neuroinflammation primary microglia traumatic brain injury
暂未订购
Inhibiting SHP2 reduces glycolysis, promotes microglial M1 polarization, and alleviates secondary inflammation following spinal cord injury in a mouse model
14
作者 Xintian Ding Chun Chen +6 位作者 Heng Zhao Bin Dai Lei Ye Tao Song Shuai Huang Jia Wang Tao You 《Neural Regeneration Research》 SCIE CAS 2025年第3期858-872,共15页
Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT... Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury. 展开更多
关键词 apoptosis GLYCOLYSIS inflammatory response MICROGLIA neurons polarization spinal cord injury Src homology 2-containing protein tyrosine phosphatase 2
暂未订购
Reciprocal polarization imaging of complex media
15
作者 Zhineng Xie Weihao Lin +5 位作者 Mengjiao Zhu Jianmin Yang Chenfan Shen Xin Jin Xiafei Qian Min Xu 《Advanced Photonics Nexus》 2025年第3期108-119,共12页
The vectorial evolution of light polarization can reveal the microstructure and anisotropy of a medium beyond what can be obtained from measuring light intensity alone.However,polarization imaging in reflection geomet... The vectorial evolution of light polarization can reveal the microstructure and anisotropy of a medium beyond what can be obtained from measuring light intensity alone.However,polarization imaging in reflection geometry,which is ubiquitous and often preferred in diverse applications,has often suffered from poor and even incorrect characterization of anisotropic media.We present reciprocal polarization imaging of complex media in reflection geometry with the reciprocal polar decomposition of backscattering Mueller matrices enforcing reciprocity.We demonstrate that reciprocal polarization imaging of complex chiral and anisotropic media ac-curately quantifies their anisotropic properties in reflection geometry,whereas traditional approaches encounter difficulties and produce inferior and often erroneous results from the violation of reciprocity.In particular,reciprocal polarization imaging provides a consistent characterization of complex media of different thicknesses,accurately measures the optical activity and glucose concentration of turbid media in reflection,and discriminates between cancerous and normal tissue with even stronger contrast than forward measurement.Reciprocal polarization imaging promises broad applications of polarization optics ranging from remote sensing to bio-medicine in reflection geometries,especially in in vivo biomedical imaging,where reflection is the only feasible geometry. 展开更多
关键词 BACKSCATTERING polarization Mueller matrix reciprocal polar decomposition anisotropic properties chiral media
在线阅读 下载PDF
Analysis of scattering characteristics of coating materials through coupling of BRDF spectral polarization imaging with Torrance-Sparrow model
16
作者 CHEN Feng CHEN Guibo +3 位作者 ZHANG Ye WANG Jianbo LIU Yanli XUE Fang 《Optoelectronics Letters》 2025年第5期271-277,共7页
To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed,... To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity. 展开更多
关键词 coating materials BRDF spectral polarization imaging fresnel equation polarization images torrancesparrow mod spectral polarization imaging system calculate refractive index bidirectional reflectance distribution function brdf
原文传递
Structure-tailored superlattice Bi_(7)Ti_(4)NbO_(21):Coupling octahedral tilting and rotation induced high ferroelectric polarization for efficient piezo-photocatalytic CO_(2) reduction 被引量:1
17
作者 Jingren Ni Rufang Zhao +8 位作者 Chendi Shi Yuanyuan Ji Aize Hao Aiting Xie Hongjian Yu Siew Kheng Boong Hiang Kwee Lee Chuanqiang Zhou Jie Han 《Advanced Powder Materials》 2025年第2期12-21,共10页
Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials.In addition,developing structural design and revealing polarization ... Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials.In addition,developing structural design and revealing polarization enhancement in-depth mechanism are top priorities.Herein,we introduce the intergrowth ferroelectrics Bi_(7)Ti_(4)NbO_(21)thin-layer nanosheets for piezo-photocatalytic CO_(2)reduction.Density functional theory(DFT)calculations indicate that interlayer lattice mismatch leads to increased tilting and rotation angle of Ti/NbO_(6)octahedra on perovskite-like layers,serving as the main reason for increased polarization.Furthermore,the tilting and rotation angle of the interlayer octahedron further increase under stress,suggesting a stronger driving force generated to facilitate charge carrier separation efficiency.Meanwhile,Bi_(7)Ti_(4)NbO_(21)nanosheets provide abundant active sites to effectively adsorb CO_(2)and acquire sensitive stress response,thereby presenting synergistically advanced piezo-photocatalytic CO_(2)reduction activity with a high CO generation rate of 426.97μmol g^(-1)h^(-1).Our work offers new perspectives and directions for initiating and investigating the mechanisms of high-performance intergrowth piezo-photocatalysts. 展开更多
关键词 ntergrowth Bi_(7)Ti_(4)NbO_(21)nanosheets Structural tailoring Ferroelectric polarization Octahedral distortion Piezo-photocatalytic CO_(2)reduction
在线阅读 下载PDF
Merging and separation of polarization singularities in complex lattices
18
作者 Mengyao Wang Tian Shi +3 位作者 Luhui Ning Peng Liu Liangsheng Li Ning Zheng 《Chinese Physics B》 2025年第3期512-519,共8页
The evolution in momentum space of bound states in the continuum(BICs)and circularly polarized states(CPSs)—as far-field polarization singularities—can be observed by controlling the geometric parameters of photonic... The evolution in momentum space of bound states in the continuum(BICs)and circularly polarized states(CPSs)—as far-field polarization singularities—can be observed by controlling the geometric parameters of photonic crystals.This offers significant potential in optics and photonics.Here,we reveal that in complex lattices far-field polarization singularities can be flexibly manipulated while preserving structural symmetry.A change in topological charge for the at-ΓBIC can generate new BICs or CPSs.At an off-Γpoint,a BIC can spawn from the collision of two CPSs.As the thickness of the structure increases,this BIC will meet the at-ΓBIC.The merging of BICs can induce topological charge transition and yield a large wavevector space around theΓpoint with ultra-high quality(Q)factors.Our findings provide a novel degree of freedom for manipulating polarization singularities,which holds great promise in radiation modulation and singular optics. 展开更多
关键词 bound states in the continuum circularly polarized states topological charge far-field polarization photonic crystals
原文传递
Enhancing interlayer hydrogen bonds of 2D Ruddlesden-Popper perovskite toward stable polarization-sensitive photodetection
19
作者 Xian-Mei Zhao Li-Wei Tang +6 位作者 Yi Liu Yu Ma Tian Yang Hao Rong Lin-Jie Wei Jun-Hua Luo Zhi-Hua Sun 《Chinese Chemical Letters》 2025年第7期582-586,共5页
2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der W... 2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der Waals interaction between the organic spacing bilayers is insufficient to preserve the stability of RP-type materials.Hence,it is of great significance to explore new stable 2D RP-phase candidates.In this work,we have successfully constructed a highly-stable polar 2D perovskite,(t-ACH)_(2)PbI_(4)(1,where t-ACH^(+)is HOOC_(8)H_(12)NH_(3)^(+)),by adopting a hydrophobic carboxylate trans-isomer of tranexamic acid as the spacing component.Strikingly,strong O-H…O hydrogen bonds between t-ACH^(+)organic bilayers compose the dimer,thus decreasing van der Waals gap and enhancing structural stability.Besides,such orientational hydrogen bonds contribute to the formation of structural polarity and generate an obvious bulk photovoltaic effect in 1,which facilitates its self-powered photodetection.As predicted,the combination of inherent anisotropy and polarity leads to self-powered polarized-light detection with a high ratio of around∼5.3,superior to those of inorganic 2D counterparts.This work paves a potential way to design highly-stable 2D perovskites for high-performance optoelectronic devices. 展开更多
关键词 polar hybrid perovskite Intermolecular interaction Strong stability Bulk photovoltaic effect Self-powered polarization light detection
原文传递
Spatially random polarization-smoothing optics by residual stress birefringence of fused silica for laser-driven inertial confinement fusion
20
作者 Chuanchao Zhang Wei Liao +6 位作者 Xiaolong Jiang Haijun Wang Fa Zeng Wei Ni Ping Li Xiaodong Jiang Qihua Zhu 《Matter and Radiation at Extremes》 2025年第5期54-63,共10页
We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination unif... We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination uniformity in inertial confinement fusion(ICF)laser systems.The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated.The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution.When combined with a continuous phase plate,the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot.The proposed PS technique is specifically designed for high-fluence large-aperture laser systems,enabling novel polarization control regimes in laser-driven ICF. 展开更多
关键词 spatially ra fused silica spatially random polarization control plate srpcp thereby linearly polarized incident laser beam residual stress birefringence fabrication techniques improving target illumination uniformity spatially random polarization smoothing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部