The El Ni?o Southern Oscillation(ENSO) is a natural phenomenon that relates to the fluctuation of temperatures over the Pacific Ocean. The ENSO significantly affects the ocean dynamics including upwelling event and co...The El Ni?o Southern Oscillation(ENSO) is a natural phenomenon that relates to the fluctuation of temperatures over the Pacific Ocean. The ENSO significantly affects the ocean dynamics including upwelling event and coastal front. A recent study discovered the seasonal upwelling in the east coast of Peninsular Malaysia(ECPM), which is significant to the fishery industry in this region. Thus, it is vital to have a better understanding of the influence of ENSO towards the coastal upwelling and thermal front in the ECPM. The sea surface temperature(SST) data achieved from moderate resolution imaging spectroradiometer(MODIS) aboard Aqua satellite are used in this study to observe the SST changes from 2005 to 2015. However, due to cloud cover issue, a reconstruction of data set is applied to MODIS data using the data interpolating empirical orthogonal function(DINEOF) to fill in the missing gap in the dataset based on spatial and temporal available data. Besides, a wavelet transformation analysis is done to determine the temperature fluctuation throughout the time series. The DINEOF results show the coastal upwelling in the ECPM develops in July and reaches its peak in August with a clear cold water patch off the coast. There is also a significant change of SST distribution during the El Ni?o years which weaken the coastal upwelling event along the ECPM. The wavelet transformation analysis shows the highest temperature fluctuation is in 2009–2010 which indicates the strongest El Ni?o throughout the time period. It is suggested that the El Ni?o is favourable for the stratification in water column thus it is weakening the upwelling and thermal frontal zone formation in ECPM waters.展开更多
The map expression of "abrupt" changes in lateral stratigraphic level of a thrust fault has been traditionally interpreted to be a result of the presence of (1) a lateral (or oblique) thrust-ramp, or (2) a fro...The map expression of "abrupt" changes in lateral stratigraphic level of a thrust fault has been traditionally interpreted to be a result of the presence of (1) a lateral (or oblique) thrust-ramp, or (2) a frontal ramp with displacement gradient, and/or (3) a combination of these geometries. These geometries have been used to interpret the structures near transverse zones in fold-thrust belts (FTB). This contribution outlines an alternative explanation that can result in the same map pattern by lateral variations in stratigraphy along the strike of a low angle thrust fault. We describe the natural example of the Leamington transverse zone, which marks the southern margin of the Pennsylvanian-Permian Oquirrh basin with genetically related lateral stratigraphic variations in the North American Sevier FTB. Thus, the observed map pattern at this zone is closely related to lateral stratigraphic variations along the strike of a horizontal fault. Even though the present-day erosional level shows the map pattern that could be interpreted as a lateral ramp, the observed structures along the Leamington zone most likely share the effects of the presence of a lateral (or oblique) ramp, lateral stratigraphic variations along the fault trace, and the displacement gradient.展开更多
基于NCEP再分析资料、EC资料和常规观测资料,应用天气分析和诊断分析方法,对2016年1月广西的低温雨雪天气进行了分析,结果表明:(1)此次低温雨雪天气与阻塞高压的强而稳定密切相关。冷空气之强盛为历史所罕见,与历史同期相比,地面冷高压...基于NCEP再分析资料、EC资料和常规观测资料,应用天气分析和诊断分析方法,对2016年1月广西的低温雨雪天气进行了分析,结果表明:(1)此次低温雨雪天气与阻塞高压的强而稳定密切相关。冷空气之强盛为历史所罕见,与历史同期相比,地面冷高压显著偏强,850 h Pa的0℃线明显偏南。850 h Pa华南强锋区的长时间维持,是造成此次过程的重要原因之一。(2)雨夹雪与雪的条件相似,主要是温度垂直结构存在差异;而降雪与降雨相比,温度垂直结构、云顶高度、逆温层顶部气温以及暖层的厚度、高度、强度、地面气温均有明显的区别。(3)降水相态由雨转为雪时,广西上空的锋面垂直结构有明显的变化。(4)持续而强盛的水汽输送、湿层深厚有利于阴雨、雪天气的发生及持续。相关分析结论可为广西低温雨雪冰冻预报提供技术参考。展开更多
2013年11月25日爆发性气旋引发黑龙江省东部地区大范围大暴雪天气,本文利用多种观测资料和NCEP再分析资料,从大尺度环流背景着眼,对气旋的爆发性发展及与其引发的暴雪天气进行了诊断分析。结果表明:气旋在具有疏散结构的发展槽槽前获得...2013年11月25日爆发性气旋引发黑龙江省东部地区大范围大暴雪天气,本文利用多种观测资料和NCEP再分析资料,从大尺度环流背景着眼,对气旋的爆发性发展及与其引发的暴雪天气进行了诊断分析。结果表明:气旋在具有疏散结构的发展槽槽前获得发展,并始终位于北支高空急流核右后方和南支高空急流核左前方,为强辐散区,有利于气旋爆发性增长。高低空急流的耦合作用,加强了气旋中心附近的上升运动,有利于强降雪的持续和加强。气旋自生成后主要在海上移动,水汽含量十分充沛,其东侧有不断增大的低空急流相伴,增强了水汽向北输送的强度,加强了黑龙江省东部地区的降雪。850 h Pa以下出现水汽辐合中心预示降雪强度增大,与强降雪对应。大气水汽饱和区的厚度减小至对流层低层,表明降雪强度减弱。暴雪与高空锋区的锋生关系密切,低层强锋区自南向北移动经过黑龙江省东部地区的时间和位置与暴雪有较好的对应关系。锋区随高度向北倾斜,高空暖锋锋区移出,降雪强度减小;锋区全部移出,降雪结束。展开更多
文摘The El Ni?o Southern Oscillation(ENSO) is a natural phenomenon that relates to the fluctuation of temperatures over the Pacific Ocean. The ENSO significantly affects the ocean dynamics including upwelling event and coastal front. A recent study discovered the seasonal upwelling in the east coast of Peninsular Malaysia(ECPM), which is significant to the fishery industry in this region. Thus, it is vital to have a better understanding of the influence of ENSO towards the coastal upwelling and thermal front in the ECPM. The sea surface temperature(SST) data achieved from moderate resolution imaging spectroradiometer(MODIS) aboard Aqua satellite are used in this study to observe the SST changes from 2005 to 2015. However, due to cloud cover issue, a reconstruction of data set is applied to MODIS data using the data interpolating empirical orthogonal function(DINEOF) to fill in the missing gap in the dataset based on spatial and temporal available data. Besides, a wavelet transformation analysis is done to determine the temperature fluctuation throughout the time series. The DINEOF results show the coastal upwelling in the ECPM develops in July and reaches its peak in August with a clear cold water patch off the coast. There is also a significant change of SST distribution during the El Ni?o years which weaken the coastal upwelling event along the ECPM. The wavelet transformation analysis shows the highest temperature fluctuation is in 2009–2010 which indicates the strongest El Ni?o throughout the time period. It is suggested that the El Ni?o is favourable for the stratification in water column thus it is weakening the upwelling and thermal frontal zone formation in ECPM waters.
基金supported by MLTM of Korean Government Program 20052004 to S.Kwon
文摘The map expression of "abrupt" changes in lateral stratigraphic level of a thrust fault has been traditionally interpreted to be a result of the presence of (1) a lateral (or oblique) thrust-ramp, or (2) a frontal ramp with displacement gradient, and/or (3) a combination of these geometries. These geometries have been used to interpret the structures near transverse zones in fold-thrust belts (FTB). This contribution outlines an alternative explanation that can result in the same map pattern by lateral variations in stratigraphy along the strike of a low angle thrust fault. We describe the natural example of the Leamington transverse zone, which marks the southern margin of the Pennsylvanian-Permian Oquirrh basin with genetically related lateral stratigraphic variations in the North American Sevier FTB. Thus, the observed map pattern at this zone is closely related to lateral stratigraphic variations along the strike of a horizontal fault. Even though the present-day erosional level shows the map pattern that could be interpreted as a lateral ramp, the observed structures along the Leamington zone most likely share the effects of the presence of a lateral (or oblique) ramp, lateral stratigraphic variations along the fault trace, and the displacement gradient.
文摘基于NCEP再分析资料、EC资料和常规观测资料,应用天气分析和诊断分析方法,对2016年1月广西的低温雨雪天气进行了分析,结果表明:(1)此次低温雨雪天气与阻塞高压的强而稳定密切相关。冷空气之强盛为历史所罕见,与历史同期相比,地面冷高压显著偏强,850 h Pa的0℃线明显偏南。850 h Pa华南强锋区的长时间维持,是造成此次过程的重要原因之一。(2)雨夹雪与雪的条件相似,主要是温度垂直结构存在差异;而降雪与降雨相比,温度垂直结构、云顶高度、逆温层顶部气温以及暖层的厚度、高度、强度、地面气温均有明显的区别。(3)降水相态由雨转为雪时,广西上空的锋面垂直结构有明显的变化。(4)持续而强盛的水汽输送、湿层深厚有利于阴雨、雪天气的发生及持续。相关分析结论可为广西低温雨雪冰冻预报提供技术参考。
文摘2013年11月25日爆发性气旋引发黑龙江省东部地区大范围大暴雪天气,本文利用多种观测资料和NCEP再分析资料,从大尺度环流背景着眼,对气旋的爆发性发展及与其引发的暴雪天气进行了诊断分析。结果表明:气旋在具有疏散结构的发展槽槽前获得发展,并始终位于北支高空急流核右后方和南支高空急流核左前方,为强辐散区,有利于气旋爆发性增长。高低空急流的耦合作用,加强了气旋中心附近的上升运动,有利于强降雪的持续和加强。气旋自生成后主要在海上移动,水汽含量十分充沛,其东侧有不断增大的低空急流相伴,增强了水汽向北输送的强度,加强了黑龙江省东部地区的降雪。850 h Pa以下出现水汽辐合中心预示降雪强度增大,与强降雪对应。大气水汽饱和区的厚度减小至对流层低层,表明降雪强度减弱。暴雪与高空锋区的锋生关系密切,低层强锋区自南向北移动经过黑龙江省东部地区的时间和位置与暴雪有较好的对应关系。锋区随高度向北倾斜,高空暖锋锋区移出,降雪强度减小;锋区全部移出,降雪结束。