The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) wh...The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) which are TRIZ-base software systems with a knowledge base provide a framework for knowledge application in different fields. The major methods in TRIZ are selected, which have four types. The problems to be solved for each method are summarized and mapping from the problems to the methods is given. Systematic method with eight paths to integrate the methods and problems is formed. A case study shows the idea generation in FFE using the integrated method step by step.展开更多
Ultrasonic testing systems have been extensively used in medical imaging and non-destructive testing applications. Generally, these systems aim at a particular application or target material. To make these systems por...Ultrasonic testing systems have been extensively used in medical imaging and non-destructive testing applications. Generally, these systems aim at a particular application or target material. To make these systems portable and more adaptable to the test environments, this study presents a reconfigurable ultrasonic testing system (RUTS), which possesses dynamic reconfiguration capabilities. RUTS consists a fully programmable Analog Front-End (AFE), which facilitates beamforming and signal conditioning for variety of applications. RUTS AFE supports up to 8 transducers for phased-array implementation. Xilinx Zynq System-on-Chip (SoC) based Zedboard provides the back-end processing of RUTS. The powerful ARM embedded processor available within Zynq SoC manages the ultrasonic data acquisition/processing and overall system control, which makes RUTS a unique platform for the ultrasonic researchers to experiment and evaluate a wide range of real-time ultrasonic signal processing applications. This Linux-based system is utilized for ultra-sonic data compression implementation providing a versatile environment for further development of ultrasonic imaging and testing system. Furthermore, this study demonstrates the capabilities of RUTS by performing ultrasonic data acquisition and data compression in real-time. Thus, this reconfigurable system enables ultrasonic designers and researchers to efficiently prototype different experiments and to incorporate and analyze high performance ultrasonic signal and image processing algorithms.展开更多
This paper introduces a high-performance analog front end for a passive UHF RFID transponder IC, which is compatible with the ISO/IEC 18000-6B standard,operating at the 915MHz ISM band with a total supply current cons...This paper introduces a high-performance analog front end for a passive UHF RFID transponder IC, which is compatible with the ISO/IEC 18000-6B standard,operating at the 915MHz ISM band with a total supply current consumption less than 8μA. There are no external components, except for the antenna. The passive IC's power supply is taken from the energy of the received RF electromagnetic field with the help of a Schottky diode rectifier. The RFID analog front end includes a local oscillator, clock generator, power on reset circuit, matching network and backscatter,rectifier,regulator, and AM demodulator. The IC, whose reading distance is more than 3m,is fabricated with a Chartered 0.35μm two-poly four-metal CMOS process with Schottky diodes and is EEPROM supported. The core size is 300μm × 720μm.展开更多
A formula of calculating curvature radius was deduced according to the theory of rolling, together with the characteristics of rolling process. Moreover, the simulation of producing process is represented. Simulating ...A formula of calculating curvature radius was deduced according to the theory of rolling, together with the characteristics of rolling process. Moreover, the simulation of producing process is represented. Simulating results indicate that the curvature radius could be reduced by increasing friction coefficient, friction coefficient ratio, reduction or roller radius, while it could be augmented by increasing the thickness of plate. Furthermore, increasing the thickness of plate would cause more effects on front end curvature, whereas reduction would do less. The result provides theoretic basis for eliminating the front end curvature in plate and sheet rolling process, and it is important to protect controlling equipment and reduce scrap as well.展开更多
Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentia...Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentials (LFP) and extracellular signal or multiple-unit discharge and behavior synchronously by utilizing electrophysiology and integrated circuit technique. It comprised microelectrodes and micro-driver assembly, analog front end (AFE),while a computer (Pentium III ) was used as the platform for the graphic user interface, which was developed using the LabVIEW programming language. It was designed as a part of ongoing research to develop a portable wireless neural signal recording system. We believe that this information will be useful for the research of brain-computer interface.展开更多
An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, C...An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.展开更多
Purpose Digital low-level radio frequency(LLRF)system has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source.The RF field inside the cavities has to be controlled better than 0.03%(rms)i...Purpose Digital low-level radio frequency(LLRF)system has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source.The RF field inside the cavities has to be controlled better than 0.03%(rms)in amplitude and 0.03°(rms)in phase.A RF front end system is required to transform the RF signal from the cavity to IF signal before inputting into the digital signal processing(DSP)board,and up-convert the IF signal back to RF to drive the power amplifier.Methods Connectorized off-the-shelf microwave components were used to realize the RF front end system.The local oscillator generation and distribution,choices of main components and design of down-/up-conversion channels have been elaborated in detail with a focus on minimizing nonlinearity and signal interferences among channels with optimized signal distribution loss.Results and conclusions The RF front end has been incorporated with the existing DSP board and tested on a warm 166.6 MHz cavity in the laboratory.Excellent channel isolations and good linearities were achieved on the RF front end system.The RF field inside the cavity was controlled with a residual noise of 0.004%(rms)in amplitude and 0.002°(rms)in phase,well below the HEPS specifications.The sensitivity to ambient environment changes have also been studied and presented in this paper.This demonstrates a first high-performance 166.6 MHz RF front end system and provides valuable insights into HEPS LLRF system development in the future.展开更多
Bionic limbs require reliable,low-noise and high-comfort interfaces between electrodes and the prosthetic system.This work presents the first fully flexible,wearable myoelectric control system compatible with both dry...Bionic limbs require reliable,low-noise and high-comfort interfaces between electrodes and the prosthetic system.This work presents the first fully flexible,wearable myoelectric control system compatible with both dry and wet electrodes.It features a low-noise front-end circuit on foil using amorphous Indium-Gallium-Zinc-Oxide(a-IGZO)Thin-Film Transistors,optimized for multi-electrode sensing.The design includes an autozeroed pre-charging buffer to minimize offset and 1/f noise while maintaining high input impedance(841 MΩat 50 Hz).The front-end achieves 22µVrms input noise,<-90 dBc crosstalk,and a 4.6 mV input offset consuming 55.3µW per channel.EMG signals measured by this AFE were used to drive an elbow musculoskeletal model and predict the resulting human elbow flexion-extension moments,which in turn were used to realize a closed-loop real-time control in a simulated bionic elbow joint,using both dry and wet electrodes.Experiments done with a series of movements show a 20°rms error in angular control.展开更多
基金National Natural Science Foundation of China (No.50675059)National Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z109)
文摘The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) which are TRIZ-base software systems with a knowledge base provide a framework for knowledge application in different fields. The major methods in TRIZ are selected, which have four types. The problems to be solved for each method are summarized and mapping from the problems to the methods is given. Systematic method with eight paths to integrate the methods and problems is formed. A case study shows the idea generation in FFE using the integrated method step by step.
文摘Ultrasonic testing systems have been extensively used in medical imaging and non-destructive testing applications. Generally, these systems aim at a particular application or target material. To make these systems portable and more adaptable to the test environments, this study presents a reconfigurable ultrasonic testing system (RUTS), which possesses dynamic reconfiguration capabilities. RUTS consists a fully programmable Analog Front-End (AFE), which facilitates beamforming and signal conditioning for variety of applications. RUTS AFE supports up to 8 transducers for phased-array implementation. Xilinx Zynq System-on-Chip (SoC) based Zedboard provides the back-end processing of RUTS. The powerful ARM embedded processor available within Zynq SoC manages the ultrasonic data acquisition/processing and overall system control, which makes RUTS a unique platform for the ultrasonic researchers to experiment and evaluate a wide range of real-time ultrasonic signal processing applications. This Linux-based system is utilized for ultra-sonic data compression implementation providing a versatile environment for further development of ultrasonic imaging and testing system. Furthermore, this study demonstrates the capabilities of RUTS by performing ultrasonic data acquisition and data compression in real-time. Thus, this reconfigurable system enables ultrasonic designers and researchers to efficiently prototype different experiments and to incorporate and analyze high performance ultrasonic signal and image processing algorithms.
文摘This paper introduces a high-performance analog front end for a passive UHF RFID transponder IC, which is compatible with the ISO/IEC 18000-6B standard,operating at the 915MHz ISM band with a total supply current consumption less than 8μA. There are no external components, except for the antenna. The passive IC's power supply is taken from the energy of the received RF electromagnetic field with the help of a Schottky diode rectifier. The RFID analog front end includes a local oscillator, clock generator, power on reset circuit, matching network and backscatter,rectifier,regulator, and AM demodulator. The IC, whose reading distance is more than 3m,is fabricated with a Chartered 0.35μm two-poly four-metal CMOS process with Schottky diodes and is EEPROM supported. The core size is 300μm × 720μm.
基金Item Sponsored by Natural Science Foundation of Shaanxi Province of China (2004E19)
文摘A formula of calculating curvature radius was deduced according to the theory of rolling, together with the characteristics of rolling process. Moreover, the simulation of producing process is represented. Simulating results indicate that the curvature radius could be reduced by increasing friction coefficient, friction coefficient ratio, reduction or roller radius, while it could be augmented by increasing the thickness of plate. Furthermore, increasing the thickness of plate would cause more effects on front end curvature, whereas reduction would do less. The result provides theoretic basis for eliminating the front end curvature in plate and sheet rolling process, and it is important to protect controlling equipment and reduce scrap as well.
基金Shandong Science Development FundGrant number:041120101
文摘Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentials (LFP) and extracellular signal or multiple-unit discharge and behavior synchronously by utilizing electrophysiology and integrated circuit technique. It comprised microelectrodes and micro-driver assembly, analog front end (AFE),while a computer (Pentium III ) was used as the platform for the graphic user interface, which was developed using the LabVIEW programming language. It was designed as a part of ongoing research to develop a portable wireless neural signal recording system. We believe that this information will be useful for the research of brain-computer interface.
文摘An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.
基金supported by the High Energy Photon Source-Test Facility(HEPS-TF)projectPioneer"Hundred Talents Program of Chinese Academy of Sciences
文摘Purpose Digital low-level radio frequency(LLRF)system has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source.The RF field inside the cavities has to be controlled better than 0.03%(rms)in amplitude and 0.03°(rms)in phase.A RF front end system is required to transform the RF signal from the cavity to IF signal before inputting into the digital signal processing(DSP)board,and up-convert the IF signal back to RF to drive the power amplifier.Methods Connectorized off-the-shelf microwave components were used to realize the RF front end system.The local oscillator generation and distribution,choices of main components and design of down-/up-conversion channels have been elaborated in detail with a focus on minimizing nonlinearity and signal interferences among channels with optimized signal distribution loss.Results and conclusions The RF front end has been incorporated with the existing DSP board and tested on a warm 166.6 MHz cavity in the laboratory.Excellent channel isolations and good linearities were achieved on the RF front end system.The RF field inside the cavity was controlled with a residual noise of 0.004%(rms)in amplitude and 0.002°(rms)in phase,well below the HEPS specifications.The sensitivity to ambient environment changes have also been studied and presented in this paper.This demonstrates a first high-performance 166.6 MHz RF front end system and provides valuable insights into HEPS LLRF system development in the future.
基金project Smart-Sense(with project number17608)which is(partly)financed by the Dutch Research Council(NWO)。
文摘Bionic limbs require reliable,low-noise and high-comfort interfaces between electrodes and the prosthetic system.This work presents the first fully flexible,wearable myoelectric control system compatible with both dry and wet electrodes.It features a low-noise front-end circuit on foil using amorphous Indium-Gallium-Zinc-Oxide(a-IGZO)Thin-Film Transistors,optimized for multi-electrode sensing.The design includes an autozeroed pre-charging buffer to minimize offset and 1/f noise while maintaining high input impedance(841 MΩat 50 Hz).The front-end achieves 22µVrms input noise,<-90 dBc crosstalk,and a 4.6 mV input offset consuming 55.3µW per channel.EMG signals measured by this AFE were used to drive an elbow musculoskeletal model and predict the resulting human elbow flexion-extension moments,which in turn were used to realize a closed-loop real-time control in a simulated bionic elbow joint,using both dry and wet electrodes.Experiments done with a series of movements show a 20°rms error in angular control.