期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Superplastic behavior of fine-grained Ti-10V-2Fe-3Al alloy fabricated by friction stir processing 被引量:1
1
作者 Kai Wang Wenjing Zhang +3 位作者 Takuya Ogura Yoshiaki Morisada Xinqing Zhao Hidetoshi Fujii 《Journal of Materials Science & Technology》 2025年第3期26-36,共11页
Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif... Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization. 展开更多
关键词 Ti-10V-2Fe-3Al alloy friction stir processing SUPERPLASTICITY Microstructural evolution Pre-heat treatment
原文传递
Research on strength-ductility and fracture behavior of ultra-fine bio-magnesium alloys via double-sided friction stir processing using liquid CO_(2) cooling
2
作者 Kun Sheng Shaokang Guan +2 位作者 Yufeng Sun Yoshiaki Morisada Hidetoshi Fujii 《Journal of Magnesium and Alloys》 2025年第8期3725-3739,共15页
Bio-magnesium(Mg)alloys exhibit excellent biocompatibility and biodegradability,making them highly promising for implant applications.However,their limited strength-ductility balance remains a critical challenge restr... Bio-magnesium(Mg)alloys exhibit excellent biocompatibility and biodegradability,making them highly promising for implant applications.However,their limited strength-ductility balance remains a critical challenge restricting widespread use.In this study,ultra-fine-grained and homogeneous Mg alloys were fabricated using double-sided friction stir processing(DS-FSP)with liquid CO_(2) rapid cooling,leading to a significant enhancement in the strength-ductility synergy of the stirred zone.The results demonstrate that DS-FSP samples exhibit simultaneous improvements in ultimate tensile strength(UTS)and elongation,reaching 334.1±15 MPa and 28.2±7.3%,respectively.Compared to the non-uniform fine-grained microstructure obtained through single-sided friction stir processing,DS-FSP generates a uniform ultra-fine-grained structure,fundamentally altering the fracture behavior and mechanisms of Mg alloys.The DS-FSP samples exhibit irregular fracture patterns due to variations in basal slip system activation among different grains.In contrast,single-sided friction stir processing samples,characterized by a fine-grained yet heterogeneous microstructure,display flat shear fractures dominated by high-density dislocation initiation induced by twin formation,with fracture propagation dictated by the non-uniform texture.By achieving an ultra-fine grain size and homogeneous texture,DS-FSP effectively modifies the fracture mechanisms,thereby enhancing the strength-ductility balance of bio-magnesium alloys. 展开更多
关键词 Bio-magnesium alloys Double-sided friction stir processing Homogeneous microstructure Ultra-fine grain Strength-ductility Fracture behavior
在线阅读 下载PDF
Achieving excellent strength-ductility synergy of wire-arc additive manufactured Mg-Gd-Y-Zr alloy via friction stir processing
3
作者 Wenzhe Yang Kuitong Yang +3 位作者 Haiou Yang Zihong Wang Chenghui Hu Xin Lin 《Journal of Magnesium and Alloys》 2025年第6期2500-2508,共9页
Friction stir processing(FSP)was applied to wire-arc additively manufactured(WAAM)Mg-9.54Gd-1.82Y-0.44Zr(GW92K)alloy to address coarse microstructure and porosity defects inherent to layer-by-layer deposition.FSP indu... Friction stir processing(FSP)was applied to wire-arc additively manufactured(WAAM)Mg-9.54Gd-1.82Y-0.44Zr(GW92K)alloy to address coarse microstructure and porosity defects inherent to layer-by-layer deposition.FSP induced complete dissolution of the coarse Mg_(5)(Gd,Y)eutectic network(initial size:3.3±0.5μm)and triggered dynamic recrystallization,achieving a 69.5%grain refinement from 16.4μm(WAAMed)to 5.0μm(FSPed).This microstructural transformation enhanced ultimate tensile strength(UTS)by 32%(217±3 MPa→286±2 MPa),yield strength(YS)by 46%(124±2 MPa→182±7 MPa),and elongation(EL)by 35%(9.7±1.1%→13.1±1.4%).Quantitative analysis via Hall-Petch relationship confirmed that grain refinement contributed~50 MPa(79%)of the total YS increment,while nano-precipitation(β/βphases<20 nm)effects accounted for the remaining~13 MPa.The simultaneous strength-ductility enhancement originates from FSP-induced defect elimination(porosity reduction:1.75%→0.18%)and dual-phase grain boundary pinning by Zr particles andβ-Mg_(5)(Gd,Y)precipitates.These findings establish FSP as a viable post-treatment for overcoming WAAM limitations in high-performance Mg-RE alloy fabrication. 展开更多
关键词 Additive manufacturing friction stir processing Mg-Gd-y-Zr alloy Microstructure Mechanical properties.
在线阅读 下载PDF
Tailoring microstructure and strength-ductility synergy in AZ91D/ZrO2 magnesium matrix composite by dual eccentric-pin tool friction stir processing
4
作者 Ashish Kumar Long Li +5 位作者 Lei Shi Lu Liu Xiang Zhang Virendra Pratap Singh Surendra Kumar Patel Chuansong Wu 《Journal of Magnesium and Alloys》 2025年第11期5669-5687,共19页
The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe ... The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe plastic deformation(SPD)technique,refines microstructures by generating fine grains,uniformly dispersed fragmented particles,and a high fraction of high-angle grain boundaries(HAGBs),thereby facilitating superplastic forming at high strain rates and low temperatures.In the present work,a dual eccentric-pin tool(DEPT)FSP was employed to incorporate ZrO_(2) particles into a 6 mm thick AZ91D Mg alloy,leading to the formation of high volume{10-12}twins,dislocations,and β-Mg_(17)Al_(12) precipitates within the stirred zone.The microstructural evolution and mechanical behaviour of the stir zone under various process parameters were analysed using scanning electron microscopy(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).The DEPT enhanced plastic shearing and dynamic recrystallization,significantly reducing the grain size from 15.6μm to 2.35μm while promoting uniform dislocation distribution within the stir zone(SZ).Grain orientation analysis revealed a transition from basal to prismatic texture dominance(29.3% volume fraction)due to intensified radial-tangential coupling shear deformation,facilitating the activation of non-basal slip systems.The DEPT evidently improved the hardness of the SZ from 58 to 92 HV and increased tensile strength from 234 MPa to 325 MPa while maintaining an elongation of 23.8%,achieving an optimal strengthductility balance.This work presents a one-step approach for tailoring microstructural heterogeneity and enhancing mechanical properties in AZ91D/ZrO_(2) composites using the DEPT FSP technique.The method provides an effective strategy for mitigating the strength-ductility trade-off commonly observed in Mg alloys. 展开更多
关键词 friction stir processing(FSP) Magnesium alloys Strength-ductility synergy Tailoring microstructure Non-basal texture Dual Eccentric-Pin Tool(DEPT)
在线阅读 下载PDF
A Composite Structure of Al–Mg–Sc Alloy Prepared by Wire Arc‑Directed Energy Deposition with Interlayer Friction Stir Processing
5
作者 Y.P.Cui X.P.Guo +4 位作者 P.Xue R.Z.Xu X.M.Guo D.R.Ni Z.Y.Ma 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1794-1808,共15页
Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure wa... Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure was still retained in the FSP-WA-DED component besides the processed zone(PZ),thus forming a composite structure.Considering the material utilization and practical service process of the deposited component,more attention should be paid on this special composite structure,but the relevant investigation has not been carried out.In this study,an Al–Mg–Sc alloy was prepared by WA-DED with interlayer FSP treatment,and the composite structure was frstly investigated.Almost all of the pores were eliminated under the pressure efect from the tool shoulder.The grains were further refned with an average size of about 1.2μm in the PZ.Though no severe plastic deformation was involved in the retained WA-DED deposition zone,comparable tensile properties with the PZ sample were obtained in the composite structure.Low ultimate tensile strength(UTS)of 289 MPa and elongation of 3.2%were achieved in the WA-DED sample.After interlayer FSP treatment,the UTS and elongation of the PZ samples were signifcantly increased to 443 MPa and 16.3%,while those in the composite structure remained at relatively high levels of 410 MPa and 13.5%,respectively.Meanwhile,a high fatigue strength of 180 and 130 MPa was obtained in the PZ and composite structure samples,which was clearly higher than that of the WA-DED sample(100 MPa).It is concluded that the defects in traditional WA-DED process can be eliminated in the composite structure after interlayer FSP treatment,resulting in enhanced tensile and fatigue properties,which provides an efective method of improving the mechanical properties of the WA-DED sample. 展开更多
关键词 Wire arc-directed energy deposition Al-Mg-Sc alloys friction stir processing Composite structure Mechanical property
原文传递
Osteoblastic differentiation and antibacterial activity of re duce d graphene oxide modified titanium alloy implant surfaces prepared via friction stir processing
6
作者 Zhi Yang Deyu Jiang +5 位作者 Manli Zhou Xianfang Zhang Min Min Liqiang Wang Wenhao Qian Yuanfei Fu 《Journal of Materials Science & Technology》 2025年第33期150-162,共13页
To promote early rapid osteogenesis and prevent late implant-related infection,it is critical to develop ef-fective and reliable surface treatment technologies for enhancing both osteogenic and antibacterial prop-erti... To promote early rapid osteogenesis and prevent late implant-related infection,it is critical to develop ef-fective and reliable surface treatment technologies for enhancing both osteogenic and antibacterial prop-erties of titanium alloy implants.Reduced graphene oxide(rGO)is considered a promising modification candidate.However,whether rGO retains its osteogenic and antibacterial functions after being applied to modify titanium alloy surfaces depends on the surface treatment technology employed.In this study,rGO was integrated onto the surface of Ti-35Nb-2Ta-3Zr(TNTZ)alloy through friction stir processing(FSP),yielding a consolidated TNTZ/F-rGO composite.The incorporation of rGO not only significantly im-proved the microhardness and hydrophilicity of the material,but also exhibited positive biological effects in vitro experiments:it effectively promoted the proliferation,osteogenic differentiation,alkaline phos-phatase(ALP)production and extracellular matrix mineralization of BMSCs.Furthermore,TNTZ/F-rGO ex-hibited potent antibacterial activity via surface-contact mechanisms.In summary,the rGO-modified in-tegrated titanium alloy has excellent osteogenic properties and high-efficiency antibacterial ability.This study provides new insights and strategies for the design of graphene-based biomaterials and implant surface modification technologies. 展开更多
关键词 OSTEOGENESIS Titanium alloy implants friction stir processing Implant surface modification
原文传递
Improvement in electromagnetic shielding effectiveness and mechanical properties of ultrafine Mg_(98.5)Zn_(0.5)Y alloy via friction stir processing
7
作者 Guangyu Zhang Jialiang Dong +5 位作者 Ziyi Li Zhongxue Feng Jun Tan Xianhua Chen Jianhong Yi Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第9期4395-4411,共17页
A novel Mg_(98.5)Zn_(0.5)Y alloy sheet with ultrafine grains and exceptional electromagnetic shielding performance has been fabricated using friction stir processing(FSP).This study investigates the impact of FSP on t... A novel Mg_(98.5)Zn_(0.5)Y alloy sheet with ultrafine grains and exceptional electromagnetic shielding performance has been fabricated using friction stir processing(FSP).This study investigates the impact of FSP on the microstructure,mechanical properties,and electromagnetic interference(EMI)shielding effectiveness(SE)of the alloy,specifically across three distinct layers within the stir zone(SZ):Top,Middle,and Bottom.The results reveal that the Mg_(12)YZn long-period stacking ordered(LPSO)phase is the predominant structure,undergoing significant grain refinement.The grain size is drastically reduced from 1.5 mm in the as-cast state to 12.6μm,10.0μm,and 7.1μm in the Top,Middle,and Bottom,respectively.This grain refinement and fragmentation of the LPSO phase into nanoscale particles result in a substantial enhancement of mechanical properties.The ultimate tensile strength(UTS)reached 358.2 MPa with an elongation(EL)of 15.1%,reflecting a 344% increase in strength and a 733% improvement in ductility compared to the as-cast material.Simultaneously,the EMI SE was maintained between 70 and 110.4 dB over a broad frequency range(30-4500 MHz).Despite the nanoscale LPSO particles contributing minimally to EMI shielding,the lamellar LPSO structure demonstrated excellent performance through multiple electromagnetic wave reflections within the matrix.These findings underscore the dual benefits of FSP in improving both mechanical strength and electromagnetic shielding effectiveness,positioning this Mg_(98.5)Zn_(0.5)Y alloy for advanced applications in the electronics and telecommunications sectors. 展开更多
关键词 friction stir processing Mg_(98.5)Zn_(0.5)Y alloy Mechanical properties Electromagnetic shielding
在线阅读 下载PDF
Superplasticity of AZ31 magnesium alloy prepared by friction stir processing 被引量:12
8
作者 张大童 熊峰 +2 位作者 张卫文 邱诚 张文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1911-1916,共6页
Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size o... Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions. 展开更多
关键词 friction stir processing AZ31 magnesium alloy SUPERPLASTICITY MICROSTRUCTURE
在线阅读 下载PDF
Preparation of ultra-fine grain Ni-Al-WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing 被引量:4
9
作者 熊拥军 邱子力 +3 位作者 李瑞迪 袁铁锤 吴宏 刘锦辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3685-3693,共9页
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele... The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect. 展开更多
关键词 laser clad friction stir processing Ni-Al-WC coating ultra-fine grain interlocking bonding
在线阅读 下载PDF
Evolution of microstructure and hardness of aluminum after friction stir processing 被引量:4
10
作者 甘文英 周正 +1 位作者 张航 彭涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期975-981,共7页
The effects of friction stir processing (FSP) on the microstructure, microtexture and hardness of rolled pure aluminum were investigated. The microstructure and microtexture were characterized using electron backsca... The effects of friction stir processing (FSP) on the microstructure, microtexture and hardness of rolled pure aluminum were investigated. The microstructure and microtexture were characterized using electron backscattered diffraction (EBSD) technique on the transversal section. The stir zone (SZ) contains fine, equiaxed and fully recrystallized grains. The texture component of the base material mainly consists of R, S and brass R textures. Miner copper texture component is also determined. In the center of the stir zone, the dominant texture is (111) parallel to about 70° from ND pointing toward RD. The textures of this location rotating clockwise about 30° and anticlockwise about 60° around the ND result in the textures of the areas, which are 3 mm apart from this location on the retreating side and advancing side, respectively. 展开更多
关键词 friction stir processing ALUMINUM EBSD TEXTURE
在线阅读 下载PDF
Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing 被引量:23
11
作者 Z.Y.Liu B.L.Xiao +1 位作者 W.G.Wang Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第7期649-655,共7页
A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations... A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061AI composites. Mg and Si elements tended to segregate at CNT-AI interfaces in the CNT/6061AI composite during artificial aging treatment. The tensile properties of both the AI and 6061AI were increased by CNT incorporation. The electrical conductivity of CNT/AI was decreased by CNT addition, while CNT/6061AI exhibited an increase in electrical conductivity due to the Mg and Si segregation. 展开更多
关键词 Carbon nanotubes Metal matrix composites Mechanical properties Electrical properties friction stir processing
原文传递
Effect of Friction Stir Processing on Pitting Corrosion and Intergranular Attack of 7075 Aluminum Alloy 被引量:15
12
作者 M. Navaser M. Atapour 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第2期155-165,共11页
The effect of friction stir processing (FSP) on the pitting corrosion and the intergranular attack of 7075 aluminum alloy was investigated. Three friction stir processed samples were produced by employing a constant... The effect of friction stir processing (FSP) on the pitting corrosion and the intergranular attack of 7075 aluminum alloy was investigated. Three friction stir processed samples were produced by employing a constant tool travel speed of 100 mm/min at the rotating speeds of 630, 1000 and 1600 rpm. It was dem- onstrated that the processed samples suffered from both pitting and intergranular corrosion. Also, the sample processed at 1600 rpm exhibited the best pitting corrosion resistance. For all FS processed samples, the corrosion attack in the heat affected zone was pitting corrosion, whereas no intergranular corrosion was detected in this area. 展开更多
关键词 Al alloy friction stir processing Pitting corrosion lntergranular corrosion
原文传递
A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061-SiC hybrid surface composite fabricated via friction stir processing 被引量:10
13
作者 Abhishek SHARMA Vyas Mani SHARMA Jinu PAUL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2005-2026,共22页
A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Micro... A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results. 展开更多
关键词 friction stir processing GRAPHENE carbon nanotube hybrid composite WEAR
在线阅读 下载PDF
Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing 被引量:14
14
作者 M.Balakrishnan I.Dinaharan +1 位作者 R.Palanivel R.Sivaprakasam 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期76-78,共3页
Friction stir processing(FSP)is a novel solid state technique to synthesize metal matrix composites.In the present work,an attempt has been made to synthesize AZ31/TiC magnesium matrix composites using FSP and to anal... Friction stir processing(FSP)is a novel solid state technique to synthesize metal matrix composites.In the present work,an attempt has been made to synthesize AZ31/TiC magnesium matrix composites using FSP and to analyze the microstructure using scanning electron microscopy.A groove was prepared on 6 mm thick AZ31 magnesium alloy plates and compacted with TiC particles.The width of the groove was varied to result in four different volume fraction of TiC particles(0,6,12 and 18 vol.%).A single pass FSP was carried out using a tool rotational speed of 1200 rpm,traverse speed of 40 mm/min and an axial force of 10 kN.Scanning electron microscopy was employed to study the microstructure of the synthesized composites.The results indicated that TiC particles were distributed uniformly in the magnesium matrix without the formation of clusters.There was no interfacial reaction between the magnesium matrix and the TiC particle.TiC particles were properly bonded to the magnesium matrix. 展开更多
关键词 Magnesium alloy friction stir processing TIC Microstruture
在线阅读 下载PDF
Improvement of microstructure and fatigue performance of wire-arc additive manufacture d 4043 aluminum alloy assiste d by interlayer friction stir processing 被引量:8
15
作者 Changshu He Jingxun Wei +4 位作者 Ying Li Zhiqiang Zhang Ni Tian Gaowu Qin Liang Zuo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期183-194,共12页
To expand the application of wire-arc additive manufacturing(WAAM)in aluminum alloy forming com-ponents,it is vitally important to reduce the porosity,refine microstructure,and thereby improve the mechanical propertie... To expand the application of wire-arc additive manufacturing(WAAM)in aluminum alloy forming com-ponents,it is vitally important to reduce the porosity,refine microstructure,and thereby improve the mechanical properties of the components.In this study,the interlayer friction stir processing(FSP)tech-nique was employed to assist the WAAM of 4043 Al-Si alloy,and the related effects on the microstruc-ture evolutions and mechanical properties of the fabricated builds were systematacially investigated.As compared to the conventional WAAM processing of Al-Si alloy,it was found that the introduction of in-terlayer FSP can effectively eliminate the pores,and both theα-Al dendrites and Si-rich eutectic network were severely broken up,leading to a remarkable enhancement in ductility and fatigue performance.The average yield strength(YS)and ultimate tensile strength(UTS)of the Al-based components produced by the combination of WAAM and interlayer FSP methods were 88 and 148 MPa,respectively.Meanwhile,the elongation(EL)of 37.5%and 28.8%can be achieved in the horizontal and vertical directions,respec-tively.Such anisotropy of EL was attributed to the inhomogeneous microstructure in the stir zone(SZ).Notably,the stress concentration can be effectively reduced by the elimination of porosity and Si-rich eu-tectic network fragmentation by the interlayer FSP,and thus the fatigue behavior was improved with the fatigue strength and elongation increased by∼28%and∼108.7%,respectively.It is anticipated that this study will provide a powerful strategy and theoretical guidance for the WAAM fabrication of Al-based alloy components with high ductility and fatigue performance. 展开更多
关键词 Wire-arc additive manufacturing(WAAM) friction stir processing(FSP) Aluminum alloy Microstructure evolution Fatigue performance
原文传递
Development and characterization studies on magnesium alloy(RZ 5)surface metal matrix composites through friction stir processing 被引量:9
16
作者 G.Vedabouriswaran S.Aravindan 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第2期145-163,共19页
Surface metal matrix composite is produced on the as cast Magnesium Rare Earth alloy-RZ 5 by single pass friction stir processing using various micro/nano sized reinforcement particles namely Boron Carbide(B_(4)C),Mul... Surface metal matrix composite is produced on the as cast Magnesium Rare Earth alloy-RZ 5 by single pass friction stir processing using various micro/nano sized reinforcement particles namely Boron Carbide(B_(4)C),Multi Walled Carbon Nano Tubes(MWCNTs),and a mixture of ZrO_(2)+Al_(2)O_(3)particles.Fine grained metal matrix composites having the grain size ranging 0.8μm to 1.87μm are achieved.Grain boundary pinning by the reinforcement particles has resulted in the transformation of coarse grained(∼81μm)base material into fine grained(<1μm)metal matrix composite.Finer grain structure and the presence of reinforcements at the stir zone have resulted in increased and improved mechanical properties of the developed composites.Microhardness ranging between 125 HV and 403 HV is achieved.Uni-axial Tensile Testing of the developed composites exhibited improvement in tensile strength.Metal matrix composites developed using various reinforcements exhibited an increase in strength ranges between 250 MPa and 320 MPa. 展开更多
关键词 friction stir processing Magnesium Rare Earth alloy-RZ 5 B4C MWCNT ZrO2+Al2O3 MICROHARDNESS Grain boundary pinning
在线阅读 下载PDF
Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing 被引量:8
17
作者 Isaac Dinaharan Shuai Zhang +1 位作者 Gaoqiang Chen Qingyu Shi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期979-992,共14页
Poor ductility is the primary concern of magnesium matrix composites(MMCs)inflicted by non-deformable ceramic particle reinforcements.Metal particles which melt at elevated temperature can be used as reinforcement to ... Poor ductility is the primary concern of magnesium matrix composites(MMCs)inflicted by non-deformable ceramic particle reinforcements.Metal particles which melt at elevated temperature can be used as reinforcement to improve the deformation characteristics.Ti-6Al-4V particles reinforced AZ31 MMCs were produced through friction stir processing(FSP)which was carried out in a traditional vertical milling machine.The microstructural features as well as the response to external tensile load were explored.A homogenous distribution of Ti-6Al-4V was achieved at every part of the stir zone.There was no chemical decomposition of Ti-6Al-4V.Further,Ti-6Al-4V did not react with Al and Zn present in AZ31 alloy to form new compounds.A continuous strong interface was obtained around Ti-6Al-4V particle with the matrix.Ti-6Al-4V particles underwent breakage during processing due to severe plastic strain.There was a remarkable refinement of grains in the composite caused by dynamic recrystallization in addition to the pinning of smaller size broken particles.Dense dislocations were observed in the matrix because of plastic deformation and the associated strain misfit.Ti-6Al-4V particles improved the tensile behavior and assisted to obtain appreciable deformation before fracture.Brittle mode of failure was avoided. 展开更多
关键词 Magnesium matrix composite friction stir processing TI-6AL-4V Microstructure Tensile strength
在线阅读 下载PDF
Magnesium based surface metal matrix composites by friction stir processing 被引量:7
18
作者 B.Ratna Sunil G.Pradeep Kumar Reddy +1 位作者 Hemendra Patle Ravikumar Dumpala 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第1期52-61,共10页
Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the materi... Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the material experience no change in chemical composition and structure.The potential applications of the surface MMCs can be found in automotive,aerospace,biomedical and power industries.Recently,friction stir processing(FSP)technique has been gaining wide popularity in producing surface composites in solid state itself.Magnesium and its alloys being difficult to process metals also have been successfully processed by FSP to fabricate surface MMCs.The aim of the present paper is to provide a comprehensive summary of state-of-the-art in fabricating magnesium based composites by FSP.Influence of the secondary phase particles and grain refinement resulted from FSP on the properties of these composites is also discussed. 展开更多
关键词 Surface composites friction stir processing HARDNESS Light weight Magnesium alloys Biomedical implants
在线阅读 下载PDF
Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing 被引量:9
19
作者 Chengqi Wang Ming Sun +2 位作者 Feiyan Zheng Liming Peng Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第3期239-244,共6页
Previous studies have proved that the zirconium(Zr)alloying and grain refining performance of a Mg-Zr master alloy on Mg alloy is closely related to the distribution of Zr particle size,and a Mg-Zr master alloy with m... Previous studies have proved that the zirconium(Zr)alloying and grain refining performance of a Mg-Zr master alloy on Mg alloy is closely related to the distribution of Zr particle size,and a Mg-Zr master alloy with more Zr particles in size range of 1-5μm exhibits a better refining efficiency.In this paper,friction stir processing(FSP)was used to modify the Zr particles size distribution of a commercially available Mg-30 wt.%Zr master alloy,and the subsequent grain refinement ability was studied by trials on a typical Mg-3Nd-0.2Zn-0.6Zr(wt.%,NZ30K)alloy.It is found that plenty of large Zr particles in the as-received Mg-30%Zr master alloy are broken by FSP.Grain refinement tests reveal that the refining efficiency of Mg-30%Zr alloy is significantly improved by FSP,which is attributed to the better distribution of Zr particles.The refinement effect by adding 0.6%FSP-ed Mg-30%Zr is approximately equivalent to that by adding 1.0%as-received Mg-30%Zr.Due to the easy and convenient operation of FSP,this study provides a new method to develop a more efficient Mg-Zr refiner. 展开更多
关键词 friction stir processing(FSP) Magnesium alloy Mg-Zr master alloy Grain refinement
在线阅读 下载PDF
Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy 被引量:8
20
作者 Hamed Seifiyan Mahmoud Heydarzadeh Sohi +2 位作者 Mohammad Ansari Donya Ahmadkhaniha Mohsen Saremi 《Journal of Magnesium and Alloys》 SCIE 2019年第4期605-616,共12页
The present study aims to investigate the effect of friction stir processing(FSP)conditions on the corrosion characteristic of AZ31B magnesium alloy.Specimens made of AZ31B alloy were friction stir processed under var... The present study aims to investigate the effect of friction stir processing(FSP)conditions on the corrosion characteristic of AZ31B magnesium alloy.Specimens made of AZ31B alloy were friction stir processed under various processing conditions,and their microstructure and corrosion behavior were studied.The corrosion behavior was studied by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and immersion test in 3.5%sodium chloride(NaCl)solution.The results showed a substantial improvement in the corrosion resistance of the friction stir processed AZ31B alloy.The improvement is likely a result of more stable corrosion products and microstructure refinement formed after friction sir processing. 展开更多
关键词 MAGNESIUM friction stir processing CORROSION POLARIZATION EIS
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部