Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough a...Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.展开更多
Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron micro...Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron microscopy. Optical microscopy observation indicates that large size well-ordered P3HT thin films can be produced by a friction-transfer technique. Highly ordered lamellae were observed in P3HT friction-transferred films by electron microscopy. Electron diffraction results confirm the existence of high orientation with the a- and c-axes of P3HT crystals aligned in the film plane while the c-axis parallel to the friction-transfer direction. The atomic force microscopy observation of the as-prepared P3HT thin film shows, however, a featureless top surface morphology, indicating the structure inhomogeneity of the obtained film. To get highly oriented P3HT thin films with homogenous structure, high temperature annealing, solvent vapor annealing and self-seeding recrystallization of the friction-transferred film were performed. It is confirmed that solvent vapor annealing and self-seeding recrystallization methods are efficient in improving the surface morphology and structure of the friction- transferred P3HT thin film. Highly oriented P3HT films with unique structure can be obtained through friction-transfer with subsequent solvent vapor annealing and self-seeding recrystallization.展开更多
Polyalkylmethacrylates(PAMAs) are well-known as viscosity index improvers and dispersant boosters.This paper shows that PAMAs are able to adsorb from oil solution on to metal surfaces,to produce thick,viscous boundary...Polyalkylmethacrylates(PAMAs) are well-known as viscosity index improvers and dispersant boosters.This paper shows that PAMAs are able to adsorb from oil solution on to metal surfaces,to produce thick,viscous boundary films.These films enhance lubricant film formation in slow speed and high temperature conditions and thus produce a significant reduction of friction.A systematic study of this phenomenon has made use of the highly flexible nature of PAMA chemistry.A range of dispersant and non-dispersant polymethacrylates has been synthesized.The influence of different functionalities,molecular weights and architectures on both boundary film formation and friction has been explored using optical interferometry and friction-speed charting.From the results, guidelines have been developed for designing PAMAs having optimal boundary lubricating properties.Through their ability to form boundary films PAMAs can significantly contribute to reduce wear in engine,gear and hydraulic lubrication.As a consequence of their viscometric and tribological performance PAMAs can furthermore improve fuel and energy efficiency in different,namely engine and hydraulic applications.Extensive work is currently conducted in the lubricant industry to develop engine oils with lower sulfur,phosphorus and metal content(low SAPS) and to optimize their frictional properties through the use of friction modifiers or synthetic base stocks.We have investigated the contribution of PAMA viscosity index improvers and boosters to improve fuel economy and to reduce wear levels.This paper reports our efforts to develop a new range of PAMAs that have been optimized in terms of composition,architecture,molecular weight and functionality and which can be used in low viscosity,low SAPS formulations to help meet the stringent requirements of modern engine oils.展开更多
Abstract Effects of film fragments in the friction system on friction and wear properties of tungsten doped diamond-like carbon films (W-DLC) were studied in the condition of boundary lubrication. It could be observ...Abstract Effects of film fragments in the friction system on friction and wear properties of tungsten doped diamond-like carbon films (W-DLC) were studied in the condition of boundary lubrication. It could be observed that the average friction coefficient was increased after introducing film fragments into the friction system, where these film fragments can accelerate the breaking of the extreme thin oil film which could separate two friction surfaces when the system is under boundary lubrication conditions. The increasing friction load can accelerate the friction ehenfieal reaction on the friction interface and lead to the crushing effect on film fragments, which decreased the friction coefficient of friction system. It was also found that the wear width, depth, and volume of the film increased by introducing film fragments and applying great load.展开更多
A star-shaped compound of perfluoro-1-octanesulfonated fullerene was synthesized. The measurement of the friction for its spin-coating film by friction force microscopy (FFM) reveals that the films possess lower frict...A star-shaped compound of perfluoro-1-octanesulfonated fullerene was synthesized. The measurement of the friction for its spin-coating film by friction force microscopy (FFM) reveals that the films possess lower friction force compared to that of the star-shaped C-60-polystyrene films.展开更多
The porous anodic aluminum oxide (AAO) film on a pure aluminum substrate was pre pared by a two-step anodization in a 0.3M oxalic acid solution and pore-enlargem ent treatment in the phosphoric acid aqueous solution a...The porous anodic aluminum oxide (AAO) film on a pure aluminum substrate was pre pared by a two-step anodization in a 0.3M oxalic acid solution and pore-enlargem ent treatment in the phosphoric acid aqueous solution at 50℃. The diameter of h ighly ordered pore on the AAO film was about 90nm, and the thickness of the AAO film was 3μm. The mineral oil was infiltrated in the ordered nanometer sized po res of AAO film on an aluminum substrate due to the capillarity effect. The fric tion coefficient was measured using a ball-on-disk tribotester. The tests were c onducted at loads range from 490 to 2450mN and at sliding velocities between 0.1 and 0.5m·s-1. Oil infiltration in porous AAO film modified friction and consid erably improved the wear resistance. As compared to the porous AAO film, the oil -infiltrated specimen had low friction coefficient. With increasing the applied load and sliding velocity, the friction coefficient of the oil-infiltrated film decreased. It indicates that the oil-infiltrated AAO film produced a new way to modify the friction and wear of aluminum alloy.展开更多
Ultrathin films composed of diazoresin(DR)and polyacrylic acid(PAA)were fabricated.The surface morphology of the films in water was measured using an atomic force microscopy(AFM).The self-assembly technique make...Ultrathin films composed of diazoresin(DR)and polyacrylic acid(PAA)were fabricated.The surface morphology of the films in water was measured using an atomic force microscopy(AFM).The self-assembly technique makes the surface rather flat and uniform.The friction force and its dependence on the velocity differ from the surface charge of the thin films.The friction force of repulsive DR/PAA film increases linearly with velocity and has lower values than that of attractive DR film over the full range of velocity.As the velocity increases,the attractive friction of DR film first decreases to a minimum at a velocity of 2 line/s and then increases all the way.When the surface is repulsive to the friction substrate,the friction of thin films that is determined by hydrated lubrication of polymer chains that is ultralubricated;when it is adhesive to the friction substrate,the friction is mainly contributed from the elastic deformation of adsorbed polymer chains in the low velocity region and from viscous sliding in the presence of hydrated-layer lubrication of the polymer chains in the higher velocity region.展开更多
Tribological characteristic of different thick diamond-like carbon (DLC) films was studied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate the normal and lateral forces, ...Tribological characteristic of different thick diamond-like carbon (DLC) films was studied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate the normal and lateral forces, respectively. Experimental results show that the lateral force under different applied loads is proportional to the normal force for the DLC films with the thickness of 153.4nm and 64.9nm. However, for the thickness of 4.48nm and 2.78nm DLC films, lateral force is nonlinear to normal force, which is opposed to the Amonton's law.The single asperity regime and the DMT model were put forward to predict the possible nanotribological mechanism between the probe and DLC film.展开更多
Trimethoxysilyl-functionalized PPEK(PKGS) films had been designed to serve as wear resistant coatings for silicon surfaces. These surface films were formed by a dip-coating technique applied to self-assembled monola...Trimethoxysilyl-functionalized PPEK(PKGS) films had been designed to serve as wear resistant coatings for silicon surfaces. These surface films were formed by a dip-coating technique applied to self-assembled monolayers(SAMs).The formation and wetting behavior of PKGS films were characterized by means of contact angle measurement.The friction coefficient of the film prepared is very low(about 0.1),and the anti-wear behavior is good,with a lack of failure after sliding over 1800 s.展开更多
In this letter we present a novel wall shear stress measurement technique for a turbulent boundary layer using sandwiched hot-film sensors. Under certain conditions, satisfactory results can be obtained using only the...In this letter we present a novel wall shear stress measurement technique for a turbulent boundary layer using sandwiched hot-film sensors. Under certain conditions, satisfactory results can be obtained using only the heat generated by one of the hot-film and a calibration of the sensors is not required. Two thin Nickel films with the same size were used in this study, separated by an electrical insulating layer. The upper film served as a sensor and the bottom one served as a guard heater. The two Nickel films were operated at a same temperature, so that the Joule heat flux generated by the sensor film transferred to the air with a minimum loss or gain depending on the uncertainties in the film temperature measurements. Analytical solution of the shear stress based on the aforementioned heat flux was obtained. The preliminary results were promising and the estimated wall shear stresses agreed reasonablywell with the directly measured values (with errors less than 20%) in a fully developed turbulent pipe flow. The proposed technique can be improved to further increase precisions.展开更多
In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced cheraical vapor deposition (RF PECVD), and silicon films were prepared between D...In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced cheraical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp^2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp^3 content of the coatings.展开更多
The effect of annealing on microstructure, adhesive and frictional properties of GeSb2Te4 films were experimentally studied. The GeSb2Te4 films were prepared by radio frequency (RF) magnetron sputtering, and anneale...The effect of annealing on microstructure, adhesive and frictional properties of GeSb2Te4 films were experimentally studied. The GeSb2Te4 films were prepared by radio frequency (RF) magnetron sputtering, and annealed at 200℃ and 340℃ under vacuum circumstance, respectively. The adhesion and friction experiments were mainly conducted with a lateral force microscope (LFM) for the GeSb2Te4 thin films before and after annealing. Their morphology and phase structure were analyzed by using atomic force microscopy (AFM) and X-ray Diffraction (XRD) techniques, and the nanoindention was employed to evaluate their hardness values. Moreover, an electric force microscope (EFM) was used to measure the surface potential. It is found that the deposited GeSb2Te4 thin film undergoes an amorphous-to-fcc and fcc-to-hex structure transition; the adhesion has a weaker dependence on the surface roughness, but a certain correlation with the surface potential of GeSb2Te4 thin films. And the friction behavior of GeSb2Te4 thin films follows their adhesion behavior under a lower applied load. However, such a relation is replaced by the mechanical behavior when the load is relatively higher. Moreover, the GeSb2Te4 thin film annealed at 340℃ presents a lubricative property.展开更多
Two-dimensional(2D)material MXene is a research hotspot in lubricating materials because of its unique layered structure,which provides weak interlayer interaction and easy shear ability.Herein,the liquid metal nanodr...Two-dimensional(2D)material MXene is a research hotspot in lubricating materials because of its unique layered structure,which provides weak interlayer interaction and easy shear ability.Herein,the liquid metal nanodroplets intercalated MXene were successfully prepared via pulsed laser treatment and self-assembly method.First,zero-dimensional(0D)nano gallium-based liquid metal(GLM)was synthesized by pulsed laser irradiation of bulk Ga_(80)In_(20)in acetone.Then,the GLM nanodroplets were loaded onto 2D MXene nanosheets via the effect of electrostatic adsorption to prepare MXene@GLM composite material.The as-obtained GLM not only widens the interlayer distance between MXene nanosheets,making it more susceptible to interlayer shear,but also enhances its lipophilicity.The friction test results showed that the MXene@GLM has the best lubrication performance with 1.0 wt%additive.The coefficient of friction(COF)of base oil PAO-6 can decrease from 0.79 to 0.097,the wear volume is reduced by 90.3%,and the maximum load sustained reaches 950 N.The good tribological properties are mainly owing to the synergistic lubrication of GLM and MXene,which can form a continuous and firm tribofilm on the friction contact surface and avoid the direct contact of the friction pair.展开更多
To obtain safety working before long-term early warning, we proposed a process for the preparation of luminescent films on metal substrate to detect the wear life. ZnO films were prepared on aluminum(Al) foils by th...To obtain safety working before long-term early warning, we proposed a process for the preparation of luminescent films on metal substrate to detect the wear life. ZnO films were prepared on aluminum(Al) foils by the magnetron sputtering technique. The microstructure, tribological properties and photoluminescence(PL) spectra of ZnO films before and after the friction test were investigated. The microstructure of ZnO films grown on Al foils exhibited a closely packed hexagonal cone shape. ZnO films were grown along the orientation perpendicular to the substrate. The tribometric tests revealed that the average friction coefficient of ZnO films was lower and more stable than that of the substrate. The results of PL spectra indicated that the effect of Al element on ZnO films led to shifts of the defect related visible band. The luminescent center of ZnO films shifted from the emission peak at 510 nm before the friction to 647 nm after the friction, indicating that the green light shifted into the red light as the friction occurred. The visible light was helpful to understanding the failure characteristics during the friction and wear, and provide an early indicator of the impending failure.展开更多
An initial investigation on the roughness and frictional properties of the self-assembled thin films from polyelectrolytes is presented. Star-shaped C-60-Poly(styrene-maleic anhydride) was successful prepared. The mul...An initial investigation on the roughness and frictional properties of the self-assembled thin films from polyelectrolytes is presented. Star-shaped C-60-Poly(styrene-maleic anhydride) was successful prepared. The multilayer thin films have been fabricated on mica with diazoresin as the cationic polyelectrolyte and hydrolyzed star-shaped C-60-poly(styrene-maleic anhydride) as the anionic polyelectrolyte via self-assembly technique. The crosslinking structure of the films is formed from the conversion of ionic bond to covalent bond after UV irradiation. AFM/FFM investigations provide insights into the roughness and frictional properties on a microscale. The roughness depends strongly on the number of film layers in the case of C-60-containing films. The frictional forces of the films exhibited a well behaved non-linear relationship in response to the change of applied load. It supports the prediction of enhanced load-bearing property Of C60-containing thin films.展开更多
Carbon nitride thin films were prepared by electron-beam evaporation assisted with nitrogen ion bombardment and TiN/CNx composite films were by unbalanced dc magnetron sputtering, respectively. It was found that the s...Carbon nitride thin films were prepared by electron-beam evaporation assisted with nitrogen ion bombardment and TiN/CNx composite films were by unbalanced dc magnetron sputtering, respectively. It was found that the sputtered films were better than the evaporated films in hardness and adhesion. The experiments of atomic oxygen action, cold welding, friction and wearing were emphasized, and the results proved that the sputtered TiN/CNx composite films were suitable for space application.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51275302,51005154)Chenguang Program of Shanghai Municipal Education Commission of China(Grant No.12CG11)
文摘Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.
基金financially supported by the National Natural Science Foundation of China(Nos.51221002 and 21434002)
文摘Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron microscopy. Optical microscopy observation indicates that large size well-ordered P3HT thin films can be produced by a friction-transfer technique. Highly ordered lamellae were observed in P3HT friction-transferred films by electron microscopy. Electron diffraction results confirm the existence of high orientation with the a- and c-axes of P3HT crystals aligned in the film plane while the c-axis parallel to the friction-transfer direction. The atomic force microscopy observation of the as-prepared P3HT thin film shows, however, a featureless top surface morphology, indicating the structure inhomogeneity of the obtained film. To get highly oriented P3HT thin films with homogenous structure, high temperature annealing, solvent vapor annealing and self-seeding recrystallization of the friction-transferred film were performed. It is confirmed that solvent vapor annealing and self-seeding recrystallization methods are efficient in improving the surface morphology and structure of the friction- transferred P3HT thin film. Highly oriented P3HT films with unique structure can be obtained through friction-transfer with subsequent solvent vapor annealing and self-seeding recrystallization.
文摘Polyalkylmethacrylates(PAMAs) are well-known as viscosity index improvers and dispersant boosters.This paper shows that PAMAs are able to adsorb from oil solution on to metal surfaces,to produce thick,viscous boundary films.These films enhance lubricant film formation in slow speed and high temperature conditions and thus produce a significant reduction of friction.A systematic study of this phenomenon has made use of the highly flexible nature of PAMA chemistry.A range of dispersant and non-dispersant polymethacrylates has been synthesized.The influence of different functionalities,molecular weights and architectures on both boundary film formation and friction has been explored using optical interferometry and friction-speed charting.From the results, guidelines have been developed for designing PAMAs having optimal boundary lubricating properties.Through their ability to form boundary films PAMAs can significantly contribute to reduce wear in engine,gear and hydraulic lubrication.As a consequence of their viscometric and tribological performance PAMAs can furthermore improve fuel and energy efficiency in different,namely engine and hydraulic applications.Extensive work is currently conducted in the lubricant industry to develop engine oils with lower sulfur,phosphorus and metal content(low SAPS) and to optimize their frictional properties through the use of friction modifiers or synthetic base stocks.We have investigated the contribution of PAMA viscosity index improvers and boosters to improve fuel economy and to reduce wear levels.This paper reports our efforts to develop a new range of PAMAs that have been optimized in terms of composition,architecture,molecular weight and functionality and which can be used in low viscosity,low SAPS formulations to help meet the stringent requirements of modern engine oils.
基金supported by China National Machinery Industry Group(Grant No.SINOMACH 2017 246)
文摘Abstract Effects of film fragments in the friction system on friction and wear properties of tungsten doped diamond-like carbon films (W-DLC) were studied in the condition of boundary lubrication. It could be observed that the average friction coefficient was increased after introducing film fragments into the friction system, where these film fragments can accelerate the breaking of the extreme thin oil film which could separate two friction surfaces when the system is under boundary lubrication conditions. The increasing friction load can accelerate the friction ehenfieal reaction on the friction interface and lead to the crushing effect on film fragments, which decreased the friction coefficient of friction system. It was also found that the wear width, depth, and volume of the film increased by introducing film fragments and applying great load.
基金This project is financially supported by the National Natural Science Foundation of China (No. 50173001)
文摘A star-shaped compound of perfluoro-1-octanesulfonated fullerene was synthesized. The measurement of the friction for its spin-coating film by friction force microscopy (FFM) reveals that the films possess lower friction force compared to that of the star-shaped C-60-polystyrene films.
基金This work was supported by the National Natural Science Foundation of China(No.50271067)Zhejiang Provincial Natural Science Foundation of China(No.ZC0203).
文摘The porous anodic aluminum oxide (AAO) film on a pure aluminum substrate was pre pared by a two-step anodization in a 0.3M oxalic acid solution and pore-enlargem ent treatment in the phosphoric acid aqueous solution at 50℃. The diameter of h ighly ordered pore on the AAO film was about 90nm, and the thickness of the AAO film was 3μm. The mineral oil was infiltrated in the ordered nanometer sized po res of AAO film on an aluminum substrate due to the capillarity effect. The fric tion coefficient was measured using a ball-on-disk tribotester. The tests were c onducted at loads range from 490 to 2450mN and at sliding velocities between 0.1 and 0.5m·s-1. Oil infiltration in porous AAO film modified friction and consid erably improved the wear resistance. As compared to the porous AAO film, the oil -infiltrated specimen had low friction coefficient. With increasing the applied load and sliding velocity, the friction coefficient of the oil-infiltrated film decreased. It indicates that the oil-infiltrated AAO film produced a new way to modify the friction and wear of aluminum alloy.
基金Supported by the National Natural Science Foundation of China(51273059)Young Teachers International Communication Program of Hubei Province Education Administration of China(2012-1)Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry
文摘Ultrathin films composed of diazoresin(DR)and polyacrylic acid(PAA)were fabricated.The surface morphology of the films in water was measured using an atomic force microscopy(AFM).The self-assembly technique makes the surface rather flat and uniform.The friction force and its dependence on the velocity differ from the surface charge of the thin films.The friction force of repulsive DR/PAA film increases linearly with velocity and has lower values than that of attractive DR film over the full range of velocity.As the velocity increases,the attractive friction of DR film first decreases to a minimum at a velocity of 2 line/s and then increases all the way.When the surface is repulsive to the friction substrate,the friction of thin films that is determined by hydrated lubrication of polymer chains that is ultralubricated;when it is adhesive to the friction substrate,the friction is mainly contributed from the elastic deformation of adsorbed polymer chains in the low velocity region and from viscous sliding in the presence of hydrated-layer lubrication of the polymer chains in the higher velocity region.
文摘Tribological characteristic of different thick diamond-like carbon (DLC) films was studied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate the normal and lateral forces, respectively. Experimental results show that the lateral force under different applied loads is proportional to the normal force for the DLC films with the thickness of 153.4nm and 64.9nm. However, for the thickness of 4.48nm and 2.78nm DLC films, lateral force is nonlinear to normal force, which is opposed to the Amonton's law.The single asperity regime and the DMT model were put forward to predict the possible nanotribological mechanism between the probe and DLC film.
基金This project was financially supported by National High Technology and Development Program of China(863 Program)(No.2003AA33G030)
文摘Trimethoxysilyl-functionalized PPEK(PKGS) films had been designed to serve as wear resistant coatings for silicon surfaces. These surface films were formed by a dip-coating technique applied to self-assembled monolayers(SAMs).The formation and wetting behavior of PKGS films were characterized by means of contact angle measurement.The friction coefficient of the film prepared is very low(about 0.1),and the anti-wear behavior is good,with a lack of failure after sliding over 1800 s.
基金funded by the National Natural Science Foundation of China (11572078 and 91752101)973 Plan (2014CB744100)
文摘In this letter we present a novel wall shear stress measurement technique for a turbulent boundary layer using sandwiched hot-film sensors. Under certain conditions, satisfactory results can be obtained using only the heat generated by one of the hot-film and a calibration of the sensors is not required. Two thin Nickel films with the same size were used in this study, separated by an electrical insulating layer. The upper film served as a sensor and the bottom one served as a guard heater. The two Nickel films were operated at a same temperature, so that the Joule heat flux generated by the sensor film transferred to the air with a minimum loss or gain depending on the uncertainties in the film temperature measurements. Analytical solution of the shear stress based on the aforementioned heat flux was obtained. The preliminary results were promising and the estimated wall shear stresses agreed reasonablywell with the directly measured values (with errors less than 20%) in a fully developed turbulent pipe flow. The proposed technique can be improved to further increase precisions.
基金supported by China Postdoctoral Science Foundation Funded Project (Nos. 20100481209 and 201104569)a Grant (20120101220) from Liaoning Province of China+1 种基金a Grant (F11-264-1-74) from Shenyang City of Chinasupported by the Fundamental Research Funds for the Central Universities, China (No. N110403002)
文摘In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced cheraical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp^2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp^3 content of the coatings.
基金the National Natural Science Foundation of China(No.50475124)the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.200330)New Century Excellent Talents in University(NCET-04-0515)
文摘The effect of annealing on microstructure, adhesive and frictional properties of GeSb2Te4 films were experimentally studied. The GeSb2Te4 films were prepared by radio frequency (RF) magnetron sputtering, and annealed at 200℃ and 340℃ under vacuum circumstance, respectively. The adhesion and friction experiments were mainly conducted with a lateral force microscope (LFM) for the GeSb2Te4 thin films before and after annealing. Their morphology and phase structure were analyzed by using atomic force microscopy (AFM) and X-ray Diffraction (XRD) techniques, and the nanoindention was employed to evaluate their hardness values. Moreover, an electric force microscope (EFM) was used to measure the surface potential. It is found that the deposited GeSb2Te4 thin film undergoes an amorphous-to-fcc and fcc-to-hex structure transition; the adhesion has a weaker dependence on the surface roughness, but a certain correlation with the surface potential of GeSb2Te4 thin films. And the friction behavior of GeSb2Te4 thin films follows their adhesion behavior under a lower applied load. However, such a relation is replaced by the mechanical behavior when the load is relatively higher. Moreover, the GeSb2Te4 thin film annealed at 340℃ presents a lubricative property.
基金This work was supported by the National Natural Science Foun-dation of China(No.U21A2046)the Western Light Project of CAS(No.xbzg-zdsys-202118)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2023-TS-03).
文摘Two-dimensional(2D)material MXene is a research hotspot in lubricating materials because of its unique layered structure,which provides weak interlayer interaction and easy shear ability.Herein,the liquid metal nanodroplets intercalated MXene were successfully prepared via pulsed laser treatment and self-assembly method.First,zero-dimensional(0D)nano gallium-based liquid metal(GLM)was synthesized by pulsed laser irradiation of bulk Ga_(80)In_(20)in acetone.Then,the GLM nanodroplets were loaded onto 2D MXene nanosheets via the effect of electrostatic adsorption to prepare MXene@GLM composite material.The as-obtained GLM not only widens the interlayer distance between MXene nanosheets,making it more susceptible to interlayer shear,but also enhances its lipophilicity.The friction test results showed that the MXene@GLM has the best lubrication performance with 1.0 wt%additive.The coefficient of friction(COF)of base oil PAO-6 can decrease from 0.79 to 0.097,the wear volume is reduced by 90.3%,and the maximum load sustained reaches 950 N.The good tribological properties are mainly owing to the synergistic lubrication of GLM and MXene,which can form a continuous and firm tribofilm on the friction contact surface and avoid the direct contact of the friction pair.
基金Funded by the National Natural Science Foundation of China(Nos.51245010,51405242)the Natural Science Foundation of Jiangsu Province of China(No.BK2012463)the Postdoctoral Science Foundation of Jiangsu Province(No.1201003B)
文摘To obtain safety working before long-term early warning, we proposed a process for the preparation of luminescent films on metal substrate to detect the wear life. ZnO films were prepared on aluminum(Al) foils by the magnetron sputtering technique. The microstructure, tribological properties and photoluminescence(PL) spectra of ZnO films before and after the friction test were investigated. The microstructure of ZnO films grown on Al foils exhibited a closely packed hexagonal cone shape. ZnO films were grown along the orientation perpendicular to the substrate. The tribometric tests revealed that the average friction coefficient of ZnO films was lower and more stable than that of the substrate. The results of PL spectra indicated that the effect of Al element on ZnO films led to shifts of the defect related visible band. The luminescent center of ZnO films shifted from the emission peak at 510 nm before the friction to 647 nm after the friction, indicating that the green light shifted into the red light as the friction occurred. The visible light was helpful to understanding the failure characteristics during the friction and wear, and provide an early indicator of the impending failure.
基金This project is financially supported by the National Natural Science Foundation of China (No. 59843008).
文摘An initial investigation on the roughness and frictional properties of the self-assembled thin films from polyelectrolytes is presented. Star-shaped C-60-Poly(styrene-maleic anhydride) was successful prepared. The multilayer thin films have been fabricated on mica with diazoresin as the cationic polyelectrolyte and hydrolyzed star-shaped C-60-poly(styrene-maleic anhydride) as the anionic polyelectrolyte via self-assembly technique. The crosslinking structure of the films is formed from the conversion of ionic bond to covalent bond after UV irradiation. AFM/FFM investigations provide insights into the roughness and frictional properties on a microscale. The roughness depends strongly on the number of film layers in the case of C-60-containing films. The frictional forces of the films exhibited a well behaved non-linear relationship in response to the change of applied load. It supports the prediction of enhanced load-bearing property Of C60-containing thin films.
文摘Carbon nitride thin films were prepared by electron-beam evaporation assisted with nitrogen ion bombardment and TiN/CNx composite films were by unbalanced dc magnetron sputtering, respectively. It was found that the sputtered films were better than the evaporated films in hardness and adhesion. The experiments of atomic oxygen action, cold welding, friction and wearing were emphasized, and the results proved that the sputtered TiN/CNx composite films were suitable for space application.