Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains...Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and f...The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.展开更多
Although eye problems can occur at any age, they are often common from the age of 40. Eye diseases with a prevalence associated with age and aging will continue to increase in the coming years. Most studies conducted ...Although eye problems can occur at any age, they are often common from the age of 40. Eye diseases with a prevalence associated with age and aging will continue to increase in the coming years. Most studies conducted on problems in middle-aged people have focused on visual disorders without taking into account all the ocular morbidities that may affect this segment of the population, hence the present study, the aim of which is to determine the proportions of different eye diseases in people aged 40 and over. Materials and Methods: This was a descriptive cross-sectional study carried out in the ophthalmology department covering the period from January 1 to December 31, 2020. Results: In total, we collected 828 patients aged 40 and over out of 1811 patients who received ophthalmological consultation during the study period, representing 45.72%. The most represented age group was 40 - 50 years, with an average age of 58.84 years and a maximum of 93 years. There were slightly more women (62.3%) than men (37.7%). The main reasons for consultation were decreased visual acuity (26.4%) and pruritus (19.9%). The main eye diseases diagnosed were cataracts (23%), allergic conjunctivitis (21.1%), and bacterial conjunctivitis (14.2%). Discussions: The predominance of cataracts in the diagnosed diseases confirms the literature data, according to which the main eye morbidities in middle-aged and elderly people are cataracts, glaucoma, and age-related macular degeneration. Conclusion: It is crucial to have a mastery of these epidemiological data of eye diseases in order to adapt the technical platforms of eye care structures to the needs of different segments of the population.展开更多
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve...As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.展开更多
The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged fo...The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged for every utility⁃grid⁃tied system to generate and utilize harmonic⁃less electric power.Therefore,the present research critically evaluates the operation of a utility⁃grid coordinated DG system and studies its islanding operation under faulted conditions.To achieve this,an Anti⁃Islanding Protection(AIP)scheme is developed which is capable of controlling the frequency and voltage variations.This scheme is operated by a coordinated operation of multivibrators.Their operation continuously traces the pre⁃defined limits of voltage,reactive,and real power,and matches with their reference values to avoid mismatch.It is revealed that,if the mismatched values of real and reactive power exceeded its threshold value of 0.1 p.u.,then the islanding condition is detected.Especially,the proposed system is assessed in two modes:utility⁃grid and islanding modes.In utility⁃grid mode,reactive power compensation is obtained by the control of voltage and frequency signals.However,in islanding mode,the real power requirement of the connected load is obtained with reduced harmonics under unsymmetrical faulted conditions.Incremental Conductance(IC)based Maximum Power Point Tracking(MPPT)technique ensures the extraction of maximum power under varying and stochastically atmospheric conditions.Simulation results reveal that the AIP scheme promptly disconnects the utility grid from the DG network in the minimum time during dynamic variations in frequency and voltage to prevent islanding.It is justified that there is violation of the considered threshold limits even under the faulted condition.The strategy of the switchgear scheme ensures the minimum detection time of the islanding operation.Total Harmonic Distortion(THD)is 0.26%for grid voltage.It validates according to the IEEE⁃1547 standard which stipulates that the THD of grid voltage must be less than 5%.Overall,satisfactory and accurate results are obtained,which are compared with the IEEE⁃1547 standard for validation.展开更多
Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation...Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation failures in line commutated converter high voltage direct current(LCC-HVDC)systems at the receiving end leads to short-term power shortage(STPS),which differs from traditional frequency stability issues.STPS occurs during the generator’s power angle swing phase,before the governor responds,and is on a timescale that is not related to primary frequency regulation.This paper addresses these challenges by examining the impact of LVRT on voltage stability,developing a frequency response model to analyze the mechanism of frequency instability caused by STPS,deriving the impact of STPS on the maximum frequency deviation,and introducing an energy deficiency factor to assess its impact on regional frequency stability.The East China Power Grid is used as a case study,where the energy deficiency factor is calculated to validate the proposed mechanism.STPS is mainly compensated by the rotor kinetic energy of the generators in this region,with minimal impact on other regions.It is concluded that the energy deficiency factor provides an effective explanation for the spatial distribution of the impact of STPS on system frequency.展开更多
To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency...To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency,and energy are investigated for powders of different polarities.Although the powders have low charge-to-mass ratios(+0.087μC/kg for the positively charged powders and−0.26μC/kg for the negatively charged ones),electrostatic discharges occur approximately every 10 s,with the maximum discharge energy being 800 mJ.Powder polarity considerably influences discharge energy.The positive powders exhibit higher discharge energy than the negative ones,although discharge frequency remains similar for both.Effects of powder charge,humidity,and mass flow on discharge frequency and discharge energy are quantitatively analyzed,providing important insights for the improvement of safety in industrial powder handling.展开更多
Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines co...Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995.展开更多
This study can play an important role in addressing the issue of achieving stable controlof launch vehicles when the first-order elastic frequency is near or overlaps with the rigid-body fre-quency,especially without ...This study can play an important role in addressing the issue of achieving stable controlof launch vehicles when the first-order elastic frequency is near or overlaps with the rigid-body fre-quency,especially without prior frequency knowledge.Much of the research up to now,such asthose based on notch-filter or signal-processing techniques,requires a gap of 3 to 5 times betweenthe low-order elastic frequencies and the rigid-body cutoff frequency.Observer-based methods,onthe other hand,require prior knowledge of the frequency data.In this paper,a method is proposed,which takes advantage of the fact that attitude measurements of the rigid-body,obtained by InertialMeasurement Units(IMUs)installed at different locations,are identical,whereas elastic-mode sig-nals differ only in their modal slopes.By differentially processing these IMU measurements,we canextract only the elastic information,thus identifying the frequencies of the elastic modes,and designan observer to distinguish the first-order elastic signal using redundant measurements.Simulationsdemonstrate that this method can autonomously identify low-order elastic frequencies,even whenthey are identical to or less than the rigid-body frequency,thereby enhancing controller perfor-mance.展开更多
With the rapid development of wireless techniques,the bandpass filter(BPF)is required to cover microwave and millimeter-wave frequency bands simultaneously with good mid-band suppression.However,it is difficult to imp...With the rapid development of wireless techniques,the bandpass filter(BPF)is required to cover microwave and millimeter-wave frequency bands simultaneously with good mid-band suppression.However,it is difficult to implement such BPF due to the large frequency ratio and wideband rejection.This paper presents a superior method to realize a dual-band BPF with a large frequency ratio maintaining compact size and low design complexity.This is contributed by an ultra-wide stopband BPF with inherent discriminating excited degree at spurious frequencies.By properly arranging the feeding position and electrical length ratio of stepped impedance resonator(SIR),the excited degree at specific spurious frequencies can be flexibly adjusted to achieve desired suppression level without affecting characteristics at the fundamental passband.For validation,two BPFs were simulated,fabricated and measured,exhibiting suppression levels of 20.3 dB and 35 dB up to 18f0 and 10.53f0 respectively.Based on this,a dual-band BPF with a large frequency ratio can be easily constructed.For demonstration,a dual-band BPF operating at 3.55 GHz and 43.15 GHz is implemented.A frequency ratio up to 12.15 and mid-band suppression level better than 28 dB had been achieved.Advantages of compactness,simplicity and excellent performance of the proposed work can be observed.展开更多
Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and sup...Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and supporting other applications that benefit scientific research and societal well-being.Currently,there are over 100 local height reference systems worldwide.Unifying these systems is a pivotal step toward constructing international height reference frames.The method introduced in this study-the gravity frequency shift via Satellite Frequency Signal Transfer(SFST)-represents a groundbreaking relativistic geodetic approach,demonstrating its potential to surpass the constraints of conventional techniques.The advent of high-precision optical atomic clocks(OAC)with an accuracy level of 1×10^(-18) has facilitated this method's implementation.The International Association of Geodesy(IAG)has established the International Height Reference System(IHRS)and its practical realization,the International Height Reference Frame(IHRF).Our study focuses on two neighbouring height systems:the China Height System(CHS)and the Nepal Height System(NHS),separated by the Himalayas and the Xizang plateau.We aim to unify these two systems by determining the geopotential and orthometric height differences between their respective height datum stations:the Qingdao Height Datum Station(QHDS)and the Madar Height Datum Station(MHDS)using a simulation experiment with the method mentioned above.Using an OAC with an accuracy of 1×10^(-18),we identified a geopotential difference of-8.348±0.464 m^(2)s^(-2) and an orthometric height difference of 0.786±0.047 m between QHDS and MHDS.These results suggest that the introduced method could unify any two height systems with fewcentimeter-level precision,emphasizing its significance in contributing to the construction of the IHRS/IHRF with today's required precision.In summary,the SFST technique is a novel geodetic method that offers an alternative for height system unification,delivering centimeter-level precision,surpassing traditional methods,and supporting the development of the IHRF.展开更多
Urban environments have challenging characteristics for bird acoustic communication.High levels of anthropogenic noise,as well as vegetation structure(e.g.,in urban parks),can potentially affect the song frequency cha...Urban environments have challenging characteristics for bird acoustic communication.High levels of anthropogenic noise,as well as vegetation structure(e.g.,in urban parks),can potentially affect the song frequency characteristics of several bird species.An additional factor such as the abundance of conspecific and heterospecific vocalizing birds may play an important role in determining the structure of bird songs.In this study,we analyzed whether noise levels,vegetation percentage,and abundance of conspecifics and heterospecifics influence the song characteristics of three syntopic songbird species:House Finch(Haemorhous mexicanus),Rufouscollared Sparrow(Zonotrichia capensis),and House Sparrow(Passer domesticus)living in urban sites.We recorded songs of these species and measured the peak frequency and entropy of their songs at 14 sites in the city of San Cristobal de Las Casas,Chiapas,Mexico.We found that the song peak frequency of House Finch and House Sparrow's songs was negatively related to the vegetation.The peak frequency of neither of the three species correlated with the average noise level.However,the abundances of conspecific and heterospecific were related to the peak frequency of the three species'songs.The entropy of the House Finch and House Sparrow songs was positively and negatively related,respectively,to noise levels.House Sparrow song entropy was negatively related to the percentage of vegetation.Song entropy of House Finches was negatively associated to conspecific and House Sparrow abundance.Song entropy of Rufous-collared Sparrows was positively related to conspecific abundance.In conclusion,the song peak frequency and song entropy of the three songbird species were differentially related to urban noise,vegetation,and conspecific and heterospecific abundance,suggesting these factors influence bird song characteristics.展开更多
The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were i...The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were investigated through experiments and simulation.The results show that the average grain size decreases after application of LFEC.At the same time,the fraction of equiaxed grains increases compared with the ingots that without LFEC.In addition,the average grain size decreases and the fraction of equiaxed grains increases with increasing the current frequency.When the current frequency increases from 5 Hz to 20 Hz,the average grain size decreases from 5.39 mm to 4.74 mm,and the fraction of equiaxed grains increases from 41.21%to 55.24%.The distribution of Lorentz force,melt flow field and temperature field in the melt was simulated using COMSOL Multiphysics software.It is found that the Lorentz force increases and the forced convection is enhanced with increasing the current frequency,thus the melt flow velocity and heat transfer in the melt are promoted.It can facilitate the heterogenous nucleation in the melt,resulting in grain refinement,and further preventing hot cracking of large size ingots.展开更多
Flooding remains one of the most destructive natural disasters,posing significant risks to both human lives and infrastructure.In India,where a large area is susceptible to flood hazards,the importance of accurate flo...Flooding remains one of the most destructive natural disasters,posing significant risks to both human lives and infrastructure.In India,where a large area is susceptible to flood hazards,the importance of accurate flood frequency analysis(FFA)and flood susceptibility mapping cannot be overstated.This study focuses on the Haora River basin in Tripura,a region prone to frequent flooding due to a combination of natural and anthropogenic factors.This study evaluates the suitability of the Log-Pearson Type Ⅲ(LP-Ⅲ)and Gumbel Extreme Value-1(EV-1)distributions for estimating peak discharges and delineates floodsusceptible zones in the Haora River basin,Tripura.Using 40 years of peak discharge data(1984-2023),the LP-Ⅲ distribution was identified as the most appropriate model based on goodness-of-fit tests.Flood susceptibility mapping,integrating 16 thematic layers through the Analytical Hierarchy Process,identified 8%,64%,and 26%of the area as high,moderate,and low susceptibility zones,respectively,with a model success rate of 0.81.The findings highlight the need for improved flood management strategies,such as enhancing river capacity and constructing flood spill channels.These insights are critical for designing targeted flood mitigation measures in the Haora basin and other flood-prone regions.展开更多
Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique ...Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.展开更多
Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics.Triboelectric nanogenerators(TENGs),a common type of energy harv...Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics.Triboelectric nanogenerators(TENGs),a common type of energy harvester,generate alternating current-based,irregular short pulses,posing a challenge for storing the generated electrical energy in energy storage systems that typically operate with direct current(DC)-based low-frequency response.In this study,we propose a new strategy that leverages high-frequency response to develop efficient chargeable TENG-supercapacitor(SC)hybrid devices.A highfrequency SC was fabricated using hollow-structured MXene electrode materials,resulting in a twofold increase in the charging efficiency of the hybrid device compared to a control SC made with conventional carbon electrode materials.For a systematic understanding,the electrochemical interplay between the TENGs and SCs was investigated as a function of the frequency characteristics of SCs(f_(SC))and the output pulse duration of TENGs(Δt_(TENG)).Increasing the fSC·Δt_(TENG) enhanced the charging efficiency of the TENG-SC hybrid devices.This study highlights the importance of frequency response design in developing efficient chargeable TENG-SC hybrid devices.展开更多
Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Const...Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Constant and superimposed oscillating normal loads are applied at the upper block.Meanwhile,the bottom block moves at a constant shear rate.We investigate the shear behavior by:1)altering the normal load oscillation frequency with a same shear rate,2)altering the shear rate with a same normal load oscillation frequency,and 3)altering the normal load oscillation frequency and shear rate simultaneously with a constant ratio.The results show that the oscillating normal load reduces the coefficient of friction(COF).The reduce degree of COF increases with higher shear rate,decreases when increasing normal load oscillation frequency,and keeps constant if the special ratio,v/f(shear rate divided by normal oscillation frequency),is constant.Moreover,we identify a time lag between peak normal load and peak shear load.And the lagging proportion increases with higher shear rate,and decreases with larger static COF.Our results imply that a lower creep rate with a higher normal load oscillation frequency easily destabilizes the creeping fault zones.展开更多
In the machining of high-end optical components,the aerostatic spindle error of an ultra-precision machine tool has a significant impact on the surface quality of the machined surfaces.The surfaces of many high-end op...In the machining of high-end optical components,the aerostatic spindle error of an ultra-precision machine tool has a significant impact on the surface quality of the machined surfaces.The surfaces of many high-end optical components need to meet the extremely stringent requirements of the full-frequency band error,which poses significant challenge to the control of the aerostatic spindle error.In this research,we put forward an active control method for the frequency domain error of the aerostatic spindle based on acoustic levitation,in which the acousticmagnetism-fluid-solid multi-field coupling rotor dynamics modeling method of the aerostatic spindle was proposed and the corresponding multi-field coupling model was established.Through the numerical simulation and preliminary experiments,the influence law of acoustic levitation on the frequency domain error of the aerostatic spindle is obtained.The results showed that acoustic levitation can be used to control the frequency domain error of the aerostatic spindle to some extent,which verified the effectiveness of the proposed method.展开更多
In response to the complex working conditions of the power grid caused by the high proportion of new energy access,which leads to insufficient output accuracy of the second-order generalized integrator(SOGI)phaselocke...In response to the complex working conditions of the power grid caused by the high proportion of new energy access,which leads to insufficient output accuracy of the second-order generalized integrator(SOGI)phaselocked loop,this article proposes an improved frequency adaptive phase-locked loop structure for SOGI.Firstly,an amplitude compensation branch is introduced to compensate for the SOGI tracking fundamental frequency signal,ensuring the accuracy of the SOGI output orthogonal signal under frequency fluctuation conditions.Secondly,by cascading two adaptive SOGI modules,the suppression capability of low-order harmonics and Direct Current(DC)components has been improved.Finally,the positive and negative sequence separation method of orthogonal signals is introduced to eliminate the influence of unbalanced components on the phase-locked loop.The comparative experiment with the classic SOGI-PLL method shows that the proposed phase-locked loop structure effectively improves the accuracy of power grid synchronization detection under complex working conditions such as harmonic components,unbalanced components,and frequency fluctuations.It can complete frequency detection within 1.5 power frequency cycles,and the detected fundamental frequency positive sequence voltage has a higher sinuosity and harmonic distortion rate within 0.5%.展开更多
基金supported by the Beijing Natural Science Foundation(5252014)the National Natural Science Foundation of China(62303063)。
文摘Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金supported by the Scientific Research Project of China Three Gorges Group Co.LTD(Contract Number:202103368).
文摘The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.
文摘Although eye problems can occur at any age, they are often common from the age of 40. Eye diseases with a prevalence associated with age and aging will continue to increase in the coming years. Most studies conducted on problems in middle-aged people have focused on visual disorders without taking into account all the ocular morbidities that may affect this segment of the population, hence the present study, the aim of which is to determine the proportions of different eye diseases in people aged 40 and over. Materials and Methods: This was a descriptive cross-sectional study carried out in the ophthalmology department covering the period from January 1 to December 31, 2020. Results: In total, we collected 828 patients aged 40 and over out of 1811 patients who received ophthalmological consultation during the study period, representing 45.72%. The most represented age group was 40 - 50 years, with an average age of 58.84 years and a maximum of 93 years. There were slightly more women (62.3%) than men (37.7%). The main reasons for consultation were decreased visual acuity (26.4%) and pruritus (19.9%). The main eye diseases diagnosed were cataracts (23%), allergic conjunctivitis (21.1%), and bacterial conjunctivitis (14.2%). Discussions: The predominance of cataracts in the diagnosed diseases confirms the literature data, according to which the main eye morbidities in middle-aged and elderly people are cataracts, glaucoma, and age-related macular degeneration. Conclusion: It is crucial to have a mastery of these epidemiological data of eye diseases in order to adapt the technical platforms of eye care structures to the needs of different segments of the population.
基金supported by the Key Scientific and Technological Projects(2024KJGG27)of Tianfu Yongxing Laboratorythe Experimental Platform Open Innovation Funding(209042025003)of Sichuan Energy Internet Research Institute,Tsinghua University.
文摘As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.
文摘The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged for every utility⁃grid⁃tied system to generate and utilize harmonic⁃less electric power.Therefore,the present research critically evaluates the operation of a utility⁃grid coordinated DG system and studies its islanding operation under faulted conditions.To achieve this,an Anti⁃Islanding Protection(AIP)scheme is developed which is capable of controlling the frequency and voltage variations.This scheme is operated by a coordinated operation of multivibrators.Their operation continuously traces the pre⁃defined limits of voltage,reactive,and real power,and matches with their reference values to avoid mismatch.It is revealed that,if the mismatched values of real and reactive power exceeded its threshold value of 0.1 p.u.,then the islanding condition is detected.Especially,the proposed system is assessed in two modes:utility⁃grid and islanding modes.In utility⁃grid mode,reactive power compensation is obtained by the control of voltage and frequency signals.However,in islanding mode,the real power requirement of the connected load is obtained with reduced harmonics under unsymmetrical faulted conditions.Incremental Conductance(IC)based Maximum Power Point Tracking(MPPT)technique ensures the extraction of maximum power under varying and stochastically atmospheric conditions.Simulation results reveal that the AIP scheme promptly disconnects the utility grid from the DG network in the minimum time during dynamic variations in frequency and voltage to prevent islanding.It is justified that there is violation of the considered threshold limits even under the faulted condition.The strategy of the switchgear scheme ensures the minimum detection time of the islanding operation.Total Harmonic Distortion(THD)is 0.26%for grid voltage.It validates according to the IEEE⁃1547 standard which stipulates that the THD of grid voltage must be less than 5%.Overall,satisfactory and accurate results are obtained,which are compared with the IEEE⁃1547 standard for validation.
基金funded by the Technology Project of State Grid Corporation of China(Research on Safety and Stability Evaluation and Optimization Enhancement Technology of Flexible Ultra High Voltage Multiterminal DC System Adapting to the Background of“Sand and Gobi Deserts”),grant number J2024003。
文摘Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation failures in line commutated converter high voltage direct current(LCC-HVDC)systems at the receiving end leads to short-term power shortage(STPS),which differs from traditional frequency stability issues.STPS occurs during the generator’s power angle swing phase,before the governor responds,and is on a timescale that is not related to primary frequency regulation.This paper addresses these challenges by examining the impact of LVRT on voltage stability,developing a frequency response model to analyze the mechanism of frequency instability caused by STPS,deriving the impact of STPS on the maximum frequency deviation,and introducing an energy deficiency factor to assess its impact on regional frequency stability.The East China Power Grid is used as a case study,where the energy deficiency factor is calculated to validate the proposed mechanism.STPS is mainly compensated by the rotor kinetic energy of the generators in this region,with minimal impact on other regions.It is concluded that the energy deficiency factor provides an effective explanation for the spatial distribution of the impact of STPS on system frequency.
基金The National Natural Science Foundation of China(No.51976039)。
文摘To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency,and energy are investigated for powders of different polarities.Although the powders have low charge-to-mass ratios(+0.087μC/kg for the positively charged powders and−0.26μC/kg for the negatively charged ones),electrostatic discharges occur approximately every 10 s,with the maximum discharge energy being 800 mJ.Powder polarity considerably influences discharge energy.The positive powders exhibit higher discharge energy than the negative ones,although discharge frequency remains similar for both.Effects of powder charge,humidity,and mass flow on discharge frequency and discharge energy are quantitatively analyzed,providing important insights for the improvement of safety in industrial powder handling.
基金Project supported by the National Natural Science Foundation of China(Grant No.32473216)Ningbo Youth Science and Technology Innovation Leading Talent Project(Grant No.2023QL004)。
文摘Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995.
文摘This study can play an important role in addressing the issue of achieving stable controlof launch vehicles when the first-order elastic frequency is near or overlaps with the rigid-body fre-quency,especially without prior frequency knowledge.Much of the research up to now,such asthose based on notch-filter or signal-processing techniques,requires a gap of 3 to 5 times betweenthe low-order elastic frequencies and the rigid-body cutoff frequency.Observer-based methods,onthe other hand,require prior knowledge of the frequency data.In this paper,a method is proposed,which takes advantage of the fact that attitude measurements of the rigid-body,obtained by InertialMeasurement Units(IMUs)installed at different locations,are identical,whereas elastic-mode sig-nals differ only in their modal slopes.By differentially processing these IMU measurements,we canextract only the elastic information,thus identifying the frequencies of the elastic modes,and designan observer to distinguish the first-order elastic signal using redundant measurements.Simulationsdemonstrate that this method can autonomously identify low-order elastic frequencies,even whenthey are identical to or less than the rigid-body frequency,thereby enhancing controller perfor-mance.
基金supported by the National Natural Science Foundation of China(No.61671485).
文摘With the rapid development of wireless techniques,the bandpass filter(BPF)is required to cover microwave and millimeter-wave frequency bands simultaneously with good mid-band suppression.However,it is difficult to implement such BPF due to the large frequency ratio and wideband rejection.This paper presents a superior method to realize a dual-band BPF with a large frequency ratio maintaining compact size and low design complexity.This is contributed by an ultra-wide stopband BPF with inherent discriminating excited degree at spurious frequencies.By properly arranging the feeding position and electrical length ratio of stepped impedance resonator(SIR),the excited degree at specific spurious frequencies can be flexibly adjusted to achieve desired suppression level without affecting characteristics at the fundamental passband.For validation,two BPFs were simulated,fabricated and measured,exhibiting suppression levels of 20.3 dB and 35 dB up to 18f0 and 10.53f0 respectively.Based on this,a dual-band BPF with a large frequency ratio can be easily constructed.For demonstration,a dual-band BPF operating at 3.55 GHz and 43.15 GHz is implemented.A frequency ratio up to 12.15 and mid-band suppression level better than 28 dB had been achieved.Advantages of compactness,simplicity and excellent performance of the proposed work can be observed.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.42030105,42274011,42074019,41974034,42204006)。
文摘Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and supporting other applications that benefit scientific research and societal well-being.Currently,there are over 100 local height reference systems worldwide.Unifying these systems is a pivotal step toward constructing international height reference frames.The method introduced in this study-the gravity frequency shift via Satellite Frequency Signal Transfer(SFST)-represents a groundbreaking relativistic geodetic approach,demonstrating its potential to surpass the constraints of conventional techniques.The advent of high-precision optical atomic clocks(OAC)with an accuracy level of 1×10^(-18) has facilitated this method's implementation.The International Association of Geodesy(IAG)has established the International Height Reference System(IHRS)and its practical realization,the International Height Reference Frame(IHRF).Our study focuses on two neighbouring height systems:the China Height System(CHS)and the Nepal Height System(NHS),separated by the Himalayas and the Xizang plateau.We aim to unify these two systems by determining the geopotential and orthometric height differences between their respective height datum stations:the Qingdao Height Datum Station(QHDS)and the Madar Height Datum Station(MHDS)using a simulation experiment with the method mentioned above.Using an OAC with an accuracy of 1×10^(-18),we identified a geopotential difference of-8.348±0.464 m^(2)s^(-2) and an orthometric height difference of 0.786±0.047 m between QHDS and MHDS.These results suggest that the introduced method could unify any two height systems with fewcentimeter-level precision,emphasizing its significance in contributing to the construction of the IHRS/IHRF with today's required precision.In summary,the SFST technique is a novel geodetic method that offers an alternative for height system unification,delivering centimeter-level precision,surpassing traditional methods,and supporting the development of the IHRF.
基金the Consejo Nacional de Humanidades,Ciencias y Tecnologías (CONAHCYT)of Mexico for providing funding for graduate studies of X.D.L. (No.001283)El Colegio de la Frontera Sur for PATM graduate fellowship for fieldwork。
文摘Urban environments have challenging characteristics for bird acoustic communication.High levels of anthropogenic noise,as well as vegetation structure(e.g.,in urban parks),can potentially affect the song frequency characteristics of several bird species.An additional factor such as the abundance of conspecific and heterospecific vocalizing birds may play an important role in determining the structure of bird songs.In this study,we analyzed whether noise levels,vegetation percentage,and abundance of conspecifics and heterospecifics influence the song characteristics of three syntopic songbird species:House Finch(Haemorhous mexicanus),Rufouscollared Sparrow(Zonotrichia capensis),and House Sparrow(Passer domesticus)living in urban sites.We recorded songs of these species and measured the peak frequency and entropy of their songs at 14 sites in the city of San Cristobal de Las Casas,Chiapas,Mexico.We found that the song peak frequency of House Finch and House Sparrow's songs was negatively related to the vegetation.The peak frequency of neither of the three species correlated with the average noise level.However,the abundances of conspecific and heterospecific were related to the peak frequency of the three species'songs.The entropy of the House Finch and House Sparrow songs was positively and negatively related,respectively,to noise levels.House Sparrow song entropy was negatively related to the percentage of vegetation.Song entropy of House Finches was negatively associated to conspecific and House Sparrow abundance.Song entropy of Rufous-collared Sparrows was positively related to conspecific abundance.In conclusion,the song peak frequency and song entropy of the three songbird species were differentially related to urban noise,vegetation,and conspecific and heterospecific abundance,suggesting these factors influence bird song characteristics.
基金financially supported by the Major Projects in Aviation Engines and Gas Turbines (Grant No.2019-VI-0020-0136)the National Key Research and Development Program of China (Grant Nos.2022YFB3705101&2022YFB3705102)+1 种基金the National Natural Science Foundation of China (Grant No.U1708253)the Fundamental Research Funds for the Central Universities,China (Grant No.N2302005)。
文摘The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were investigated through experiments and simulation.The results show that the average grain size decreases after application of LFEC.At the same time,the fraction of equiaxed grains increases compared with the ingots that without LFEC.In addition,the average grain size decreases and the fraction of equiaxed grains increases with increasing the current frequency.When the current frequency increases from 5 Hz to 20 Hz,the average grain size decreases from 5.39 mm to 4.74 mm,and the fraction of equiaxed grains increases from 41.21%to 55.24%.The distribution of Lorentz force,melt flow field and temperature field in the melt was simulated using COMSOL Multiphysics software.It is found that the Lorentz force increases and the forced convection is enhanced with increasing the current frequency,thus the melt flow velocity and heat transfer in the melt are promoted.It can facilitate the heterogenous nucleation in the melt,resulting in grain refinement,and further preventing hot cracking of large size ingots.
文摘Flooding remains one of the most destructive natural disasters,posing significant risks to both human lives and infrastructure.In India,where a large area is susceptible to flood hazards,the importance of accurate flood frequency analysis(FFA)and flood susceptibility mapping cannot be overstated.This study focuses on the Haora River basin in Tripura,a region prone to frequent flooding due to a combination of natural and anthropogenic factors.This study evaluates the suitability of the Log-Pearson Type Ⅲ(LP-Ⅲ)and Gumbel Extreme Value-1(EV-1)distributions for estimating peak discharges and delineates floodsusceptible zones in the Haora River basin,Tripura.Using 40 years of peak discharge data(1984-2023),the LP-Ⅲ distribution was identified as the most appropriate model based on goodness-of-fit tests.Flood susceptibility mapping,integrating 16 thematic layers through the Analytical Hierarchy Process,identified 8%,64%,and 26%of the area as high,moderate,and low susceptibility zones,respectively,with a model success rate of 0.81.The findings highlight the need for improved flood management strategies,such as enhancing river capacity and constructing flood spill channels.These insights are critical for designing targeted flood mitigation measures in the Haora basin and other flood-prone regions.
基金supported by the National Key Resarch and Development Program of China(Grant No.2023YFD1200802)the Base Bank of Lingnan Rice Germplasm Resources Project,China(Grant No.2024B1212060009).
文摘Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.
基金supported by the Basic Science Research Program(RS-2024-00344021 and RS-2023-00261543)through the National Research Foundation of Korea(NRF)grant by the Korean Government(MSIT)the National Research Council of Science&Technology(NST)grant by the Korea Government(MSIT)(GTL24011-000)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(RS-2024-00420590,HRD Program for Industrial Innovation).
文摘Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics.Triboelectric nanogenerators(TENGs),a common type of energy harvester,generate alternating current-based,irregular short pulses,posing a challenge for storing the generated electrical energy in energy storage systems that typically operate with direct current(DC)-based low-frequency response.In this study,we propose a new strategy that leverages high-frequency response to develop efficient chargeable TENG-supercapacitor(SC)hybrid devices.A highfrequency SC was fabricated using hollow-structured MXene electrode materials,resulting in a twofold increase in the charging efficiency of the hybrid device compared to a control SC made with conventional carbon electrode materials.For a systematic understanding,the electrochemical interplay between the TENGs and SCs was investigated as a function of the frequency characteristics of SCs(f_(SC))and the output pulse duration of TENGs(Δt_(TENG)).Increasing the fSC·Δt_(TENG) enhanced the charging efficiency of the TENG-SC hybrid devices.This study highlights the importance of frequency response design in developing efficient chargeable TENG-SC hybrid devices.
基金Project(52474122)supported by the National Natural Science Foundation of ChinaProject(HSR202105)supported by the National Engineering Laboratory for High-speed Railway Construction,China+1 种基金Project(2025B1515020067)supported by the Natural Science Foundation of Guangdong Province of ChinaProject(2022A1515240009)supported by the Natural Science Foundation of Guangdong Province,China。
文摘Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Constant and superimposed oscillating normal loads are applied at the upper block.Meanwhile,the bottom block moves at a constant shear rate.We investigate the shear behavior by:1)altering the normal load oscillation frequency with a same shear rate,2)altering the shear rate with a same normal load oscillation frequency,and 3)altering the normal load oscillation frequency and shear rate simultaneously with a constant ratio.The results show that the oscillating normal load reduces the coefficient of friction(COF).The reduce degree of COF increases with higher shear rate,decreases when increasing normal load oscillation frequency,and keeps constant if the special ratio,v/f(shear rate divided by normal oscillation frequency),is constant.Moreover,we identify a time lag between peak normal load and peak shear load.And the lagging proportion increases with higher shear rate,and decreases with larger static COF.Our results imply that a lower creep rate with a higher normal load oscillation frequency easily destabilizes the creeping fault zones.
基金Supported by National Natural Science Foundation of China(Grant No.52475494)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY22E050003)Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-A2020005).
文摘In the machining of high-end optical components,the aerostatic spindle error of an ultra-precision machine tool has a significant impact on the surface quality of the machined surfaces.The surfaces of many high-end optical components need to meet the extremely stringent requirements of the full-frequency band error,which poses significant challenge to the control of the aerostatic spindle error.In this research,we put forward an active control method for the frequency domain error of the aerostatic spindle based on acoustic levitation,in which the acousticmagnetism-fluid-solid multi-field coupling rotor dynamics modeling method of the aerostatic spindle was proposed and the corresponding multi-field coupling model was established.Through the numerical simulation and preliminary experiments,the influence law of acoustic levitation on the frequency domain error of the aerostatic spindle is obtained.The results showed that acoustic levitation can be used to control the frequency domain error of the aerostatic spindle to some extent,which verified the effectiveness of the proposed method.
基金supported by the Science and Technology Project of China Southern Power Grid Co.,Ltd.(Grant No.ZBKJXM20232471)the National Key R&D Program of China(Grant No.2021YFB1600200)the Innovation Capability Support Program of Shaanxi(Grant No.2022KXJ-144)。
文摘In response to the complex working conditions of the power grid caused by the high proportion of new energy access,which leads to insufficient output accuracy of the second-order generalized integrator(SOGI)phaselocked loop,this article proposes an improved frequency adaptive phase-locked loop structure for SOGI.Firstly,an amplitude compensation branch is introduced to compensate for the SOGI tracking fundamental frequency signal,ensuring the accuracy of the SOGI output orthogonal signal under frequency fluctuation conditions.Secondly,by cascading two adaptive SOGI modules,the suppression capability of low-order harmonics and Direct Current(DC)components has been improved.Finally,the positive and negative sequence separation method of orthogonal signals is introduced to eliminate the influence of unbalanced components on the phase-locked loop.The comparative experiment with the classic SOGI-PLL method shows that the proposed phase-locked loop structure effectively improves the accuracy of power grid synchronization detection under complex working conditions such as harmonic components,unbalanced components,and frequency fluctuations.It can complete frequency detection within 1.5 power frequency cycles,and the detected fundamental frequency positive sequence voltage has a higher sinuosity and harmonic distortion rate within 0.5%.