This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality w...This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are demonstrated to support the derived conclusions.展开更多
This paper investigates the generalized uncertainty principles of fractional Fourier transform (FRFT) for concentrated data in limited supports. The continuous and discrete generalized uncertainty relations, whose bou...This paper investigates the generalized uncertainty principles of fractional Fourier transform (FRFT) for concentrated data in limited supports. The continuous and discrete generalized uncertainty relations, whose bounds are related to FRFT parameters and signal lengths, were derived in theory. These uncertainty principles disclose that the data in FRFT domains may have?much higher concentration than that in traditional time-frequency domains, which will enrich the ensemble of generalized uncertainty principles.展开更多
文摘This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are demonstrated to support the derived conclusions.
文摘This paper investigates the generalized uncertainty principles of fractional Fourier transform (FRFT) for concentrated data in limited supports. The continuous and discrete generalized uncertainty relations, whose bounds are related to FRFT parameters and signal lengths, were derived in theory. These uncertainty principles disclose that the data in FRFT domains may have?much higher concentration than that in traditional time-frequency domains, which will enrich the ensemble of generalized uncertainty principles.