Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation...Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation failures in line commutated converter high voltage direct current(LCC-HVDC)systems at the receiving end leads to short-term power shortage(STPS),which differs from traditional frequency stability issues.STPS occurs during the generator’s power angle swing phase,before the governor responds,and is on a timescale that is not related to primary frequency regulation.This paper addresses these challenges by examining the impact of LVRT on voltage stability,developing a frequency response model to analyze the mechanism of frequency instability caused by STPS,deriving the impact of STPS on the maximum frequency deviation,and introducing an energy deficiency factor to assess its impact on regional frequency stability.The East China Power Grid is used as a case study,where the energy deficiency factor is calculated to validate the proposed mechanism.STPS is mainly compensated by the rotor kinetic energy of the generators in this region,with minimal impact on other regions.It is concluded that the energy deficiency factor provides an effective explanation for the spatial distribution of the impact of STPS on system frequency.展开更多
Power electronic-interfaced renewable energy sources(RES)exhibit lower inertia compared to traditional synchronous generators.The large-scale integration of RES has led to a significant reduction in system inertia,pos...Power electronic-interfaced renewable energy sources(RES)exhibit lower inertia compared to traditional synchronous generators.The large-scale integration of RES has led to a significant reduction in system inertia,posing significant challenges for maintaining frequency stability in future power systems.This issue has garnered considerable attention in recent years.However,the existing research has not yet achieved a comprehensive understanding of system inertia and frequency stability in the context of low-inertia systems.To this end,this paper provides a comprehensive review of the definition,modeling,analysis,evaluation,and control for frequency stability.It commences with an exploration of inertia and frequency characteristics in low-inertia systems,followed by a novel definition of frequency stability.A summary of frequency stability modeling,analysis,and evaluation methods is then provided,along with their respective applicability in various scenarios.Additionally,the two critical factors of frequency control—energy sources at the system level and control strategies at the device level—are examined.Finally,an outlook on future research in low-inertia power systems is discussed.展开更多
A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connect...A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.展开更多
Energy storage with virtual inertia and virtual droop control has attracted wide attention due to its improved frequency stability with high penetration of renewable energy sources.However,there are significant spatia...Energy storage with virtual inertia and virtual droop control has attracted wide attention due to its improved frequency stability with high penetration of renewable energy sources.However,there are significant spatial differences in frequency response.The location and capacity of energy storage are urgent issues to be resolved to support frequency.This study addresses the minimum investment of hybrid energy storage systems for providing sufficient frequency support,including the power capacity,energy capacity,and location of energy storage.A frequency response model is developed taking into account the network structure and frequency spatial distribution characteristics.In addition,a numerical computation method is provided for determining the frequency dynamic indices and calculating the output power of energy storage.Based on a simplified frequency response model,an optimal hybrid energy storage configuration method is proposed to optimize the control parameters,location,and capacity to satisfy the frequency dynamic constraints.This configuration method can exploit the potential of energy storage with different rates in different frequency support stages.To address the nonconvex drawback of this configuration,a numerical calculation method is provided based on the explicit gradient of the frequency and energy storage indices to enhance the computational efficiency.Simulations of a two-area system and the south-east Australian system verify the effectiveness of the proposed hybrid energy storage configuration method.展开更多
The significant increase in the proportion of renewable energy sources(RESs)has elevated risks of extreme ramp events and frequency instability in power systems.In recent years,frequency stability events have occurred...The significant increase in the proportion of renewable energy sources(RESs)has elevated risks of extreme ramp events and frequency instability in power systems.In recent years,frequency stability events have occurred in several countries/regions worldwide due to flexibility deficiencies.Generation flexibility has emerged as a critical factor influencing the frequency stability of power systems.This paper proposes a domain of attraction(DOA)-based quantitative method to assess the frequency stability region of power systems with a high proportion of RESs,considering generation flexibility constraints.First,ramp rate is adopted as the core indicator to characterize generation flexibility within automatic generation control(AGC)timescale,through which a nonlinear AGC model with rate saturation constraints is established.Second,the concept of DOA is introduced to define the stability region of the nonlinear AGC.Third,a quadratic Lyapunov-based estimation method is employed to quantitatively analyze the DOA of the nonlinear AGC at different generation flexibility levels.Simulation results demonstrate that increased generation flexibility expands the estimated DOA of the nonlinear AGC,whereas generation flexibility deficiency induces AGC instability.Moreover,state trajectory and time-domain simulation verify that the proposed estimation method accurately represents the stability region of the nonlinear AGC.展开更多
Ultrastable continuous-wave lasers are one of the important elements for space-based gravitational wave detection.Here we present a Pound–Drever–Hall laser frequency-locked system based on a field-programmable gate ...Ultrastable continuous-wave lasers are one of the important elements for space-based gravitational wave detection.Here we present a Pound–Drever–Hall laser frequency-locked system based on a field-programmable gate array,demonstrating its potential to achieve 10-16levels of frequency stability for space applications.The system is employed to lock a spacequalified 1064-nm neodymium-doped yttrium aluminum garnet laser to a laboratory-operated 20-cm ultrastable optical cavity.Major noise contributors are identified as laser intensity fluctuation and residual amplitude modulation.The heterodyne beat measurement shows that the frequency noise spectral density of a single laser is reduced to 2.5 Hz/√Hz at a Fourier frequency of 1 m Hz,and the frequency instability is 2.1×10^(-16)at 1 s and remains below 3.5×10^(-16)up to 6000 s.展开更多
The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and f...The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.展开更多
A robust external cavity diode laser (ECDL) insensitive to mechanical vibration is built with an interference filter for selecting wavelength and a cat-eye reflector for light feedback. The free-running laser has a ...A robust external cavity diode laser (ECDL) insensitive to mechanical vibration is built with an interference filter for selecting wavelength and a cat-eye reflector for light feedback. The free-running laser has a linewidth of 72 kHz. The laser frequency stability reaches 3×10^-12 at 1-s integration time in terms of relative Allan variance based on the saturation absorption spectrum.展开更多
The operation of transmission systems with large share of wind power is specially challenging under storm conditions.Under the stormy wind speed conditions,wind turbine protection system is designed to shut down the t...The operation of transmission systems with large share of wind power is specially challenging under storm conditions.Under the stormy wind speed conditions,wind turbine protection system is designed to shut down the turbine to avoid excessive mechanical load.The sudden loss of wind power from large offshore plants is difficult to forecast accurately,which results in a large amount of power imbalance.The severity of such a wind power imbalance towards frequency stability needs to be studied for the future power systems.In addition,the overhead transmission lines can also be affected during storms,thereby increasing their probability of failure in the operation of power system under the islanded conditions.This paper investigates how the stormy weather can threaten the frequency stability of future Danish power system with large share of wind power and how to avoid the frequency instability through proper control and defence strategies such as high-voltage direct current(HVDC)control and load shedding.Sensitivity studies are performed for ramp rates of HVDC control,load shedding strategies,inertia of the system with different volumes of disturbances to understand their impact on frequency stability.展开更多
The frequency stability of an all-solid-state Nd:YVO4 laser is significantly improved by means of a specially designed Fabry-Perot (F-P) interferometer used for the frequency standard in the frequency-stabilizing syst...The frequency stability of an all-solid-state Nd:YVO4 laser is significantly improved by means of a specially designed Fabry-Perot (F-P) interferometer used for the frequency standard in the frequency-stabilizing system. The ten.peraturo of the F-P cavity is accurately controlled by a set of thermoelectric cooler (TEC) modules attached on th dy of the cavity and the electronic feedback circuit. We find that the long-term unidirectional frequency shift of the output laser, resulting from the slow increase of the cavity length under the effect of the temperature integration on the cavity body, is essentially eliminated. The frequency stability of the output laser with the power of 530 mW is better than ±200 kHz in 1 minute and ±2.3 MHz iu 40 minutes, respectively. The fluctuation of output power is smaller than ±0.5% over one hour.展开更多
We demonstrate an ultrastable miniaturized transportable laser system at 1550 nm by locking it to an optical fiber delay line[FDL].To achieve optimized long-term frequency stability,the FDL was placed into a vacuum ch...We demonstrate an ultrastable miniaturized transportable laser system at 1550 nm by locking it to an optical fiber delay line[FDL].To achieve optimized long-term frequency stability,the FDL was placed into a vacuum chamber with a five-layer thermal shield,and a delicate two-stage active temperature stabilization,an optical power stabilization,and an RF power stabilization were applied in the system.A fractional frequency stability of better than 3.2×10^[-15]at 1 s averaging time and1.1×10^[-14]at 1000 s averaging time was achieved,which is the best long-term frequency stability of an all-fiber-based ultrastable laser observed to date.展开更多
This paper presents a high-Q RF MEMS oscillator consisting of a micro-disk resonator and low noise feedback circuits. The oscillator has high frequency stability and low phase noise. The two-port resonator was hermeti...This paper presents a high-Q RF MEMS oscillator consisting of a micro-disk resonator and low noise feedback circuits. The oscillator has high frequency stability and low phase noise. The two-port resonator was hermetically encapsulated using low-cost Sn-rich Au-Sn solder bonding, which significantly improves the frequency stability. A low noise oscillator circuit was designed with a two-stage amplifying architecture which effectively improves both the frequency stability and phase noise performance. The measured phase noise is -96 dBc/Hz at 1 kHz offset and-128 dBc/Hz at far-from-carrier offsets. Moreover, the medium-term frequency stability and Allan deviation of the oscillator are 4-4 ppm and 10 ppb, respectively. The oscillator is a promising component in future wireless communication application.展开更多
In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the life...In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.展开更多
In this paper, we analyze and design a new type of servo system with noninteger voltage controlled crystal oscillator (VCXO) for rubidium atomic frequency standard (RAFS), which does not require fractional frequen...In this paper, we analyze and design a new type of servo system with noninteger voltage controlled crystal oscillator (VCXO) for rubidium atomic frequency standard (RAFS), which does not require fractional frequency synthesizer. By the estab- lishment of the loop equations with noises and drifts, we prove that all the components of the loop can affect its performance in- dex, and in which, RAFS long-term frequency stability is mainly determined by frequency multiplier, quantum system, and servo amplifier; the short-term one is mostly decided by VCXO. Owing to the elimination of the frequency synthesizer and its additive mixing unit, we can reduce phase noise and stray of the servo sys- tem, and it is favorable for miniaturizing the RAFS system. In addition, we adopt some targeted optimization measures to im- prove the frequency stability index. The good short-term fre- quency stability index is also validated by the test results.展开更多
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise supp...Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry;on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable40Ca+optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.展开更多
System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid.Excessive system frequency variations are able to result in load shedding,frequency instability,and even ...System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid.Excessive system frequency variations are able to result in load shedding,frequency instability,and even generator damage.With increasing wind power penetration,there is rising concern about the reduction in inertia response and primary frequency control in the electric power grid.Converter-based wind generation is capable of providing inertia response and primary frequency response;nevertheless,the primary frequency and inertia responses of wind generation are different from those of conventional synchronous fleets;it is not completely understood how the primary frequency and inertia responses affect the given system under various disturbances and available kinetic energy levels.Simulations are used to investigate the influences of inertia and droop control strategies on the dynamic frequency responses,particularly the index of the second frequency drop under various disturbance and wind conditions.A quantitative analysis provides insight into setting of inertia and droop control coefficients for various wind and disturbance conditions to facilitate adequate dynamic frequency responses during frequency events.展开更多
We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-ca...We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.展开更多
The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on...The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on various parameters. Under the optimum condition, the laser frequency at 399 nm can be stabilized. The long-term stability of laser frequency is measured by monitoring the fluorescence signal of the ytterbium atomic beam induced by the locked laser. The laser frequency is shown to be tightly locked, and the stabilized laser is successfully applied to the cooling of ytterbium atoms.展开更多
We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To r...We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator (AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore, the magneto-optical trap (MOT)-molasses process can be implemented smoothly.展开更多
基金funded by the Technology Project of State Grid Corporation of China(Research on Safety and Stability Evaluation and Optimization Enhancement Technology of Flexible Ultra High Voltage Multiterminal DC System Adapting to the Background of“Sand and Gobi Deserts”),grant number J2024003。
文摘Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation failures in line commutated converter high voltage direct current(LCC-HVDC)systems at the receiving end leads to short-term power shortage(STPS),which differs from traditional frequency stability issues.STPS occurs during the generator’s power angle swing phase,before the governor responds,and is on a timescale that is not related to primary frequency regulation.This paper addresses these challenges by examining the impact of LVRT on voltage stability,developing a frequency response model to analyze the mechanism of frequency instability caused by STPS,deriving the impact of STPS on the maximum frequency deviation,and introducing an energy deficiency factor to assess its impact on regional frequency stability.The East China Power Grid is used as a case study,where the energy deficiency factor is calculated to validate the proposed mechanism.STPS is mainly compensated by the rotor kinetic energy of the generators in this region,with minimal impact on other regions.It is concluded that the energy deficiency factor provides an effective explanation for the spatial distribution of the impact of STPS on system frequency.
基金supported by the National Natural Science Foundation of China(U2166601)。
文摘Power electronic-interfaced renewable energy sources(RES)exhibit lower inertia compared to traditional synchronous generators.The large-scale integration of RES has led to a significant reduction in system inertia,posing significant challenges for maintaining frequency stability in future power systems.This issue has garnered considerable attention in recent years.However,the existing research has not yet achieved a comprehensive understanding of system inertia and frequency stability in the context of low-inertia systems.To this end,this paper provides a comprehensive review of the definition,modeling,analysis,evaluation,and control for frequency stability.It commences with an exploration of inertia and frequency characteristics in low-inertia systems,followed by a novel definition of frequency stability.A summary of frequency stability modeling,analysis,and evaluation methods is then provided,along with their respective applicability in various scenarios.Additionally,the two critical factors of frequency control—energy sources at the system level and control strategies at the device level—are examined.Finally,an outlook on future research in low-inertia power systems is discussed.
文摘A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.
基金supported by the National Key Research and Development Program(No.2023YFB2406600)the National Natural Science Foundation of China(No.U22A6007 and No.52222703).
文摘Energy storage with virtual inertia and virtual droop control has attracted wide attention due to its improved frequency stability with high penetration of renewable energy sources.However,there are significant spatial differences in frequency response.The location and capacity of energy storage are urgent issues to be resolved to support frequency.This study addresses the minimum investment of hybrid energy storage systems for providing sufficient frequency support,including the power capacity,energy capacity,and location of energy storage.A frequency response model is developed taking into account the network structure and frequency spatial distribution characteristics.In addition,a numerical computation method is provided for determining the frequency dynamic indices and calculating the output power of energy storage.Based on a simplified frequency response model,an optimal hybrid energy storage configuration method is proposed to optimize the control parameters,location,and capacity to satisfy the frequency dynamic constraints.This configuration method can exploit the potential of energy storage with different rates in different frequency support stages.To address the nonconvex drawback of this configuration,a numerical calculation method is provided based on the explicit gradient of the frequency and energy storage indices to enhance the computational efficiency.Simulations of a two-area system and the south-east Australian system verify the effectiveness of the proposed hybrid energy storage configuration method.
基金supported in part by Science and Technology Project of State Grid Corporation of China(No.5100-202336015A-1-1-ZN)。
文摘The significant increase in the proportion of renewable energy sources(RESs)has elevated risks of extreme ramp events and frequency instability in power systems.In recent years,frequency stability events have occurred in several countries/regions worldwide due to flexibility deficiencies.Generation flexibility has emerged as a critical factor influencing the frequency stability of power systems.This paper proposes a domain of attraction(DOA)-based quantitative method to assess the frequency stability region of power systems with a high proportion of RESs,considering generation flexibility constraints.First,ramp rate is adopted as the core indicator to characterize generation flexibility within automatic generation control(AGC)timescale,through which a nonlinear AGC model with rate saturation constraints is established.Second,the concept of DOA is introduced to define the stability region of the nonlinear AGC.Third,a quadratic Lyapunov-based estimation method is employed to quantitatively analyze the DOA of the nonlinear AGC at different generation flexibility levels.Simulation results demonstrate that increased generation flexibility expands the estimated DOA of the nonlinear AGC,whereas generation flexibility deficiency induces AGC instability.Moreover,state trajectory and time-domain simulation verify that the proposed estimation method accurately represents the stability region of the nonlinear AGC.
基金supported by the National Key Research and Development Program of China(Nos.2021YFC2201800 and 2020YFC2200300)the National Natural Science Foundation of China(Nos.11327407,11654004,and 11235004)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB21010300 and XDB23030202)。
文摘Ultrastable continuous-wave lasers are one of the important elements for space-based gravitational wave detection.Here we present a Pound–Drever–Hall laser frequency-locked system based on a field-programmable gate array,demonstrating its potential to achieve 10-16levels of frequency stability for space applications.The system is employed to lock a spacequalified 1064-nm neodymium-doped yttrium aluminum garnet laser to a laboratory-operated 20-cm ultrastable optical cavity.Major noise contributors are identified as laser intensity fluctuation and residual amplitude modulation.The heterodyne beat measurement shows that the frequency noise spectral density of a single laser is reduced to 2.5 Hz/√Hz at a Fourier frequency of 1 m Hz,and the frequency instability is 2.1×10^(-16)at 1 s and remains below 3.5×10^(-16)up to 6000 s.
基金supported by the Scientific Research Project of China Three Gorges Group Co.LTD(Contract Number:202103368).
文摘The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.
基金supported by the National"863"Program of China(No.200712Z301)the National Natural Science Foundation of China(No.10834007)
文摘A robust external cavity diode laser (ECDL) insensitive to mechanical vibration is built with an interference filter for selecting wavelength and a cat-eye reflector for light feedback. The free-running laser has a linewidth of 72 kHz. The laser frequency stability reaches 3×10^-12 at 1-s integration time in terms of relative Allan variance based on the saturation absorption spectrum.
文摘The operation of transmission systems with large share of wind power is specially challenging under storm conditions.Under the stormy wind speed conditions,wind turbine protection system is designed to shut down the turbine to avoid excessive mechanical load.The sudden loss of wind power from large offshore plants is difficult to forecast accurately,which results in a large amount of power imbalance.The severity of such a wind power imbalance towards frequency stability needs to be studied for the future power systems.In addition,the overhead transmission lines can also be affected during storms,thereby increasing their probability of failure in the operation of power system under the islanded conditions.This paper investigates how the stormy weather can threaten the frequency stability of future Danish power system with large share of wind power and how to avoid the frequency instability through proper control and defence strategies such as high-voltage direct current(HVDC)control and load shedding.Sensitivity studies are performed for ramp rates of HVDC control,load shedding strategies,inertia of the system with different volumes of disturbances to understand their impact on frequency stability.
基金This research was supported by the Major State Basic Research Project of China (No. 2001CB309304) the National Natural Science Foundation of China (No. 60238010, 60178012, and 60378014), and Shanxi Provin- cial Science Foundation (No. 20011030).
文摘The frequency stability of an all-solid-state Nd:YVO4 laser is significantly improved by means of a specially designed Fabry-Perot (F-P) interferometer used for the frequency standard in the frequency-stabilizing system. The ten.peraturo of the F-P cavity is accurately controlled by a set of thermoelectric cooler (TEC) modules attached on th dy of the cavity and the electronic feedback circuit. We find that the long-term unidirectional frequency shift of the output laser, resulting from the slow increase of the cavity length under the effect of the temperature integration on the cavity body, is essentially eliminated. The frequency stability of the output laser with the power of 530 mW is better than ±200 kHz in 1 minute and ±2.3 MHz iu 40 minutes, respectively. The fluctuation of output power is smaller than ±0.5% over one hour.
基金supported by the Special Foundation for State Major Basic Research Program of China(Nos.2021YFC2201803 and 2021YFC2201904)。
文摘We demonstrate an ultrastable miniaturized transportable laser system at 1550 nm by locking it to an optical fiber delay line[FDL].To achieve optimized long-term frequency stability,the FDL was placed into a vacuum chamber with a five-layer thermal shield,and a delicate two-stage active temperature stabilization,an optical power stabilization,and an RF power stabilization were applied in the system.A fractional frequency stability of better than 3.2×10^[-15]at 1 s averaging time and1.1×10^[-14]at 1000 s averaging time was achieved,which is the best long-term frequency stability of an all-fiber-based ultrastable laser observed to date.
基金Project supported by the National Natural Science Foundation of China(Nos.61234007,61404136)the State Key Development Program for Basic Research of China(Nos.2011CB933102,2013YQ16055103)
文摘This paper presents a high-Q RF MEMS oscillator consisting of a micro-disk resonator and low noise feedback circuits. The oscillator has high frequency stability and low phase noise. The two-port resonator was hermetically encapsulated using low-cost Sn-rich Au-Sn solder bonding, which significantly improves the frequency stability. A low noise oscillator circuit was designed with a two-stage amplifying architecture which effectively improves both the frequency stability and phase noise performance. The measured phase noise is -96 dBc/Hz at 1 kHz offset and-128 dBc/Hz at far-from-carrier offsets. Moreover, the medium-term frequency stability and Allan deviation of the oscillator are 4-4 ppm and 10 ppb, respectively. The oscillator is a promising component in future wireless communication application.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279128)the Innovative Research Group Science Foundation(Grant No.51321065)the Construction Science and Technology Project of Ministry of Transport of the People’s Republic of China(Grant No.2013328224070)
文摘In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.
文摘In this paper, we analyze and design a new type of servo system with noninteger voltage controlled crystal oscillator (VCXO) for rubidium atomic frequency standard (RAFS), which does not require fractional frequency synthesizer. By the estab- lishment of the loop equations with noises and drifts, we prove that all the components of the loop can affect its performance in- dex, and in which, RAFS long-term frequency stability is mainly determined by frequency multiplier, quantum system, and servo amplifier; the short-term one is mostly decided by VCXO. Owing to the elimination of the frequency synthesizer and its additive mixing unit, we can reduce phase noise and stray of the servo sys- tem, and it is favorable for miniaturizing the RAFS system. In addition, we adopt some targeted optimization measures to im- prove the frequency stability index. The good short-term fre- quency stability index is also validated by the test results.
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金supported by the National Key R&D Program of China (Grant Nos.2022YFB3904001, 2022YFB3904004, and 2018YFA0307500)the National Natural Science Foundation of China (Grant Nos. 12022414 and 12121004)+3 种基金the CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099)the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013)the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055)the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201)。
文摘Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry;on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable40Ca+optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.
基金This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJB470026)Key Project of Smart Grid Technology and Equipment of National Key Research and Development Plan of China(2016YFB0900601).
文摘System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid.Excessive system frequency variations are able to result in load shedding,frequency instability,and even generator damage.With increasing wind power penetration,there is rising concern about the reduction in inertia response and primary frequency control in the electric power grid.Converter-based wind generation is capable of providing inertia response and primary frequency response;nevertheless,the primary frequency and inertia responses of wind generation are different from those of conventional synchronous fleets;it is not completely understood how the primary frequency and inertia responses affect the given system under various disturbances and available kinetic energy levels.Simulations are used to investigate the influences of inertia and droop control strategies on the dynamic frequency responses,particularly the index of the second frequency drop under various disturbance and wind conditions.A quantitative analysis provides insight into setting of inertia and droop control coefficients for various wind and disturbance conditions to facilitate adequate dynamic frequency responses during frequency events.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91336101 and 61127901)West Light Foundation of the Chinese Academy of Sciences(Grant No.2013ZD02)
文摘We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774044)the National Key Basic Research and Development Program of China(Grant No.2010CB922903)+1 种基金the Science and Technology Commission of Shanghai Municipality of China(Grant No.07JC14019)Shanghai Pujiang Talent Program of China(Grant No.07PJ14038)
文摘The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on various parameters. Under the optimum condition, the laser frequency at 399 nm can be stabilized. The long-term stability of laser frequency is measured by monitoring the fluorescence signal of the ytterbium atomic beam induced by the locked laser. The laser frequency is shown to be tightly locked, and the stabilized laser is successfully applied to the cooling of ytterbium atoms.
基金Project supported by the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2014YQ35046103)
文摘We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator (AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore, the magneto-optical trap (MOT)-molasses process can be implemented smoothly.