期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Optimal load frequency control system for two-area connected via AC/DC link using cuckoo search algorithm
1
作者 Gaber EL-SAADY Alexey MIKHAYLOV +2 位作者 Nora BARANYAI Mahrous AHMED Mahmoud HEMEIDA 《虚拟现实与智能硬件(中英文)》 2025年第3期299-316,共18页
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ... Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances. 展开更多
关键词 Load frequency control Cuckoo search algorithm PI controllers State space modeling
在线阅读 下载PDF
Primary frequency control considering communication delay for grid-connected offshore wind power systems 被引量:2
2
作者 Xueping Pan Qijie Xu +5 位作者 Tao Xu Jinpeng Guo Xiaorong Sun Yuquan Chen Qiang Li Wei Liang 《Global Energy Interconnection》 EI CSCD 2024年第3期241-253,共13页
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque... Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy. 展开更多
关键词 Offshore wind power Primary frequency control Time delay Padéapproximation Time-delay compensation control
在线阅读 下载PDF
Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids
3
作者 Aijia Ding Tingzhang Liu 《Energy Engineering》 EI 2024年第12期3735-3759,共25页
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ... The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes. 展开更多
关键词 Fractional order PID interconnected microgrids load frequency control meta-heuristic algorithm parameter optimization
在线阅读 下载PDF
Robust Stabilization of Load Frequency Control System Under Networked Environment 被引量:1
4
作者 Ashraf Khalil Ji-Hong Wang Omar Mohamed 《International Journal of Automation and computing》 EI CSCD 2017年第1期93-105,共13页
The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shar... The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system. 展开更多
关键词 Load frequency control load frequency control (LFC) Markov chains networked control system robust stabilization.
原文传递
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:17
5
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems Model predictive control Optimization Press load control WIND Wind turbines
在线阅读 下载PDF
Robust H_∞ Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach 被引量:6
6
作者 Yonghui Sun Yingxuan Wang +2 位作者 Zhinong Wei Guoqiang Sun Xiaopeng Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期610-617,共8页
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re... This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results. 展开更多
关键词 Index Terms--Load frequency control (LFC) multi-area powersystem robust control sliding mode control (SMC) time delay.
在线阅读 下载PDF
Addressing Frequency Control Challenges in Future Low-Inertia Power Systems:A Great Britain Perspective 被引量:5
7
作者 Qiteng Hong Md Asif Uddin Khan +3 位作者 Callum Henderson AgustíEgea-Àlvarez Dimitrios Tzelepis Campbell Booth 《Engineering》 SCIE EI 2021年第8期1057-1063,共7页
The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction ... The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction in system inertia,the transmission system in Great Britain(GB)faces some unique challenges owing to its relatively small capacity,while being decoupled from other transmission systems and with the renewable resources largely non-uniformly distributed across the system.This paper presents opinions and insights on the challenges associated with frequency control in a low-inertia system and the potential solutions from a GB perspective.In this paper,we focus on three main techniques that act over different time scales:synchronous condensers,inertia emulation,and fast frequency response.We evaluate their relative advantages and limitations with learnings from recent research and development projects in GB,along with the opinions on their roles in addressing the frequency control challenges in future low-inertia systems. 展开更多
关键词 Fast frequency control Inertia emulation Synchronous compensation Low-inertia systems
在线阅读 下载PDF
Decentralized Resilient H_∞Load Frequency Control for Cyber-Physical Power Systems Under DoS Attacks 被引量:3
8
作者 Xin Zhao Suli Zou Zhongjing Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1737-1751,共15页
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte... This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks. 展开更多
关键词 Cyber-physical power systems(CPPSs) denial-of-service(DoS)attacks load frequency control(LFC) sampled-data control
在线阅读 下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
9
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 Multi-objective optimization Voltage control frequency control Power flow controllable loads Game theory
在线阅读 下载PDF
Load Frequency Control of Multi-interconnected Renewable Energy Plants Using Multi-Verse Optimizer 被引量:1
10
作者 Hegazy Rezk Mohamed A.Mohamed +1 位作者 Ahmed A.Zaki Diab N.Kanagaraj 《Computer Systems Science & Engineering》 SCIE EI 2021年第5期219-231,共13页
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente... A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller. 展开更多
关键词 Load frequency control multi-verse optimization multi-area power system renewable energy sources
在线阅读 下载PDF
Load Frequency Control of Small Hydropower Plants Using One-Input Fuzzy PI Controller with Linear and Non-Linear Plant Model 被引量:2
11
作者 Derek Ajesam Asoh Edwin Nyuysever Mbinkar Albert Nouck Moutlen 《Smart Grid and Renewable Energy》 2022年第1期1-16,共16页
<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes... <span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span> 展开更多
关键词 Small Hydropower Plant Linear and Non-Linear Model Load frequency control Non-Linear control Fuzzy Logic controller Renewable Energy
在线阅读 下载PDF
Active disturbance rejection based load frequency control and voltage regulation in power systems
12
作者 Lili DONG Anusree MANDALI +1 位作者 Allen MORINEC Yang ZHAO 《Control Theory and Technology》 EI CSCD 2018年第4期336-350,共15页
An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnecte... An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value. For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to maintain the voltages at nearby buses within the ANSI C84.1 limits (or +5% tolerance). Particularly, an alternative ADRC with smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals. 展开更多
关键词 Active disturbance rejection control power systems load frequency control static var compensator voltageregulation DISTURBANCE system uncertainty
原文传递
A low-noise X-band microwave source with digital automatic frequency control for electron paramagnetic resonance spectroscopy
13
作者 贺羽 康润琪 +1 位作者 石致富 荣星 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期46-51,共6页
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto... We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science. 展开更多
关键词 electron paramagnetic resonance X-BAND microwave source automatic frequency control
原文传递
Distributed demand side management via smart appliances contributing to frequency control
14
作者 张玮琛 《Journal of Chongqing University》 CAS 2015年第3期101-108,共8页
Nowadays renewable energy has become a trend for energy production but its variable nature has made balancing of demand and supply of the power grid difficult. Dynamic demand management using smart appliances is propo... Nowadays renewable energy has become a trend for energy production but its variable nature has made balancing of demand and supply of the power grid difficult. Dynamic demand management using smart appliances is proposed to serve as a way that part of the regulation burden of balancing demand and supply is shifted to the demand side. However, if all appliances respond to the same frequency deviation, they may start to synchronize, causing large power overshoots and instability of the power grid. Therefore, the idea of implementing randomness into the frequency control of the appliances is proposed and this is what we call a stochastic approach. Simulators are built from scratch to model both scenarios. The effect of synchronization is analyzed and the parameters that can affect the synchronization are investigated. It has been found that the larger the contribution from the smart appliances to the power grid, the easier and faster the synchronization takes place. The stochastic approach solves the problem of synchronization and averages out the large power overshoot. However, the overall performance of stochastic operations is unacceptable due to the randomness in the operation though the mean and variance are as expected. More advanced feedback policies and schemes may be designed to achieve a better performance. 展开更多
关键词 renewable energy demand side smart grid smart appliance frequency control RANDOMNESS
在线阅读 下载PDF
Coefficient Diagram Method Based Load Frequency Control for a Modern Power System
15
作者 Princess Garasi Yaser Qudaih +2 位作者 Raheel Ali Masayuki Watanabe Yasunori Mitani 《Journal of Electronic Science and Technology》 CAS 2014年第3期270-276,共7页
increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the syste... increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs. 展开更多
关键词 BATTERY coefficient diagram method electric vehicles heat pump load frequency control renewable energy sources.
在线阅读 下载PDF
Kalman-Filtering-Based Frequency Control Strategy Considering Electrolytic Aluminum Load
16
作者 Yuqin Chen Shihai Yang +1 位作者 Yueping Kong Mingming Chen 《Energy Engineering》 EI 2022年第4期1517-1529,共13页
Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)acc... Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)accounts for large amount of the local electric loads in some areas.The participation of EAL in local frequency control has huge application prospects.However,the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption.Focusing on this problem,this paper proposes a control strategy for EAL to participate in the frequency control.For the controller design of the EAL system,the system frequency response model is established and the EAL transfer function model is developed based on the equivalent circuit of EAL.For the problem of load-side frequency measurement error,the frequency estimation method based on Kalman-filtering is designed.To improve the performance of EAL in the frequency control,a fuzzy EAL controller is designed.The testing examples show that the designed Kalman-filter has good performance in de-noising the measured frequency,and the designed fuzzy controller has better performance in stabilizing system frequency than traditional methods. 展开更多
关键词 Electrolytic aluminum load kalman-filtering frequency control
在线阅读 下载PDF
Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals
17
作者 Zhao-Min Jia Xu-Hai Yang +3 位作者 Bao-Qi Sun Xiao-Ping Zhou Bo Xiang Xin-Yu Dou 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期29-32,共4页
We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit.... We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10-12/s orders of magnitude. 展开更多
关键词 Direct Digital frequency control Based on the Phase Step Change Characteristic between Signals
原文传递
Application of Frequency Control Technique to a Rotary Drill
18
作者 YAO Can-yang 《International Journal of Plant Engineering and Management》 2009年第1期38-42,共5页
The scheme of a frequency control system in a rotary drill is established by integrating a converter and a programmable logic controller ( PLC ). The principle of speed regulation, characters of speed-up and speed-d... The scheme of a frequency control system in a rotary drill is established by integrating a converter and a programmable logic controller ( PLC ). The principle of speed regulation, characters of speed-up and speed-down, and the mechanical running performance are also analyzed. The result of application indicates that the frequency control system excellently solves the problems of start, stop, and speed regulation of the drill. The equipment maintenance workload and cost are thus reduced. 展开更多
关键词 rotary drill frequency control PLC MOTOR
在线阅读 下载PDF
Integral Performance Criteria Based Analysis of Load Frequency Control in Bilateral Based Market
19
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期1021-1032,共12页
Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restru... Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restructured power system that operates under Bilateral based policy scheme. Various Integral Performance Criteria measures are taken as fitness function in PSO and are compared using overshoot, settling time and frequency and tie-line power deviation following a step load perturbation (SLP). The motivation for using different fitness technique in PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes are tested on a two-area restructured power system. The results of the proposed PSO based controller show the better performance compared to the classical Ziegler-Nichols (Z-N) tuned PI and Fuzzy Rule based PI controller. 展开更多
关键词 Load frequency control Particle Swarm Optimization Bilateral Market Area control Error Fuzzy Rule Based PI controller Parametric Uncertainties
在线阅读 下载PDF
Load Frequency Control of a Two Area-Power System with Non-reheat Turbines by SMC Approach
20
作者 Jianping Guo 《Journal of Energy and Power Engineering》 2015年第6期566-573,共8页
Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (s... Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique. 展开更多
关键词 Sliding mode control load frequency control NONLINEARITIES robustness.
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部