At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components o...At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation.展开更多
With the objective of establishing a distinction between deformation structures caused by freeze/thaw cycles and those resulting from seismic activity, we studied three well–exposed alluvial deposits in a section at ...With the objective of establishing a distinction between deformation structures caused by freeze/thaw cycles and those resulting from seismic activity, we studied three well–exposed alluvial deposits in a section at Dogai Coring, northern Qiangtang Basin, Tibetan Plateau. Deformation is present in the form of plastic structures(diapirs, folds and clastic dykes), brittle structures(micro–faults) and cryogenic wedges. These soft–sediment deformation features(except the micro–faults) are mainly characterized by meter–scale, non–interlayered, low–speed and low–pressure displacements within soft sediments, most commonly in the form of plastic deformation. Taking into account the geographic setting, lithology and deformation features, we interpret these soft–sediment deformation features as the products of freeze/thaw cycles, rather than of earthquake–induced shock waves, thus reflecting regional temperature changes and fluctuations of hydrothermal conditions in the uppermost sediments. The micro–faults(close to linear hot springs) are ascribed to regional fault activity;however, we were unable to identify the nature of the micro–faults, perhaps due to disturbance by subsequent freeze/thaw cycles. This study may serve as a guide to recognizing the differences between deformation structures attributed to freeze/thaw cycles and seismic processes.展开更多
The mechanical properties of polyvinyl alcohol (PVA) films prepared by evaporating water from freeze/thaw cycled gel were investigated as a function of the number of freeze/thaw cycles. The maximum stress of the PVA f...The mechanical properties of polyvinyl alcohol (PVA) films prepared by evaporating water from freeze/thaw cycled gel were investigated as a function of the number of freeze/thaw cycles. The maximum stress of the PVA film prepared by freeze/thaw cycling was larger than that prepared without the freeze/thaw cycle process. The largest maximum stress was 46.2 MPa for a film prepared with 10 freeze/thaw cycles, which was twice as large as that for a cast PVA film without freeze/thaw cycling (22.3 MPa). This is due to the formation of small crystallites during the freeze/thaw cycle process. Furthermore, when the film was annealed at 130°C, the maximum stress was as high as 181 MPa which was comparable to that for PVA films prepared using additives. The crystallinity is not the main factor that determines the maximum stress for either the non-annealed or annealed freeze/thaw cycled films, but the glass transition temperature is well correlated with the maximum stress, irrespective of the annealing process. This is due to the different molecular morphology;the non-annealed freeze/thaw cycled film consists of many small crystallites, but the annealed film consists of larger crystallites formed during the annealing process.展开更多
The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in...The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in frozen regions remains underexplored.In seasonally frozen areas,F-T(freeze-thaw)cycles threaten subgrade stability,necessitating research on pile-plate structure’s behavior under such conditions.To address this challenge,a scaled model experiment was conducted on a silty sand foundation,simulating F-T cycles using temperature control devices.Key parameters,including soil temperature,frozen depth,and displacement,were systematically monitored.Results indicate that the bearing plate functions as an effective insulation layer,significantly reducing sub-zero temperature penetration.Additionally,the anchoring action of the piles mitigates frost heave in the foundation soil,while the plate middle restrains soil deformation more effectively due to increased constraint.The thermal insulation provided by the plate maintains higher soil temperatures,delaying the onset of freezing.By the end of each freezing stage,the vertical displacement in the natural subgrade is approximately 4 times greater than that beneath the pile-plate structure.Furthermore,the frost depth is about 1.3-1.4 times and 1.6-4.9 times greater than that measured below the plate edge and middle,respectively.These insights contribute to the development of more resilient designs for high-speed railway subgrades in seasonally frozen regions,offering engineers a robust,scientifically-backed foundation for future infrastructure projects.展开更多
Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability...Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability and often triggers collapses or landslides.Existing studies focus mostly on singlescale or single-factor analyses but cannot fully capture the coupled mechanisms driving instability under freeze-thaw conditions.This study aimed to establish a theoretical framework to quantitatively characterize the evolution of rock mass stability,thereby providing a sound basis for hazard prediction and prevention.By integrating limit equilibrium theory with rock frost heave and circular hole expansion theory,mechanical models for sliding-and toppling-type dangerous rock masses were established.Three key factors were incorporated:frost heave forces acting on throughgoing structural planes,rock property deterioration in nonpenetrative sections,and progressive freezing depth development.A theoretical relationship between the stability coefficient and the number of freeze-thaw cycles was derived.By considering the Zimei Peaks rock masses in Gansu Province as the case study and conducting parametric analyses,the results revealed that the stability coefficient rapidly decreases during the initial cycles,followed by a slower decrease and eventual stabilization.The coefficient decreased 4.5 times more during the first 15 cycles than during the subsequent 15 cycles.Moreover,stability degradation was strongly influenced by the freezing temperature,initial porosity,and rock debris loss ratio,with critical thresholds determined at a 3.8%porosity and a 0.83 debris loss ratio.The findings indicated that stability deterioration is governed by the coupled effects of frost heave loading,microstructural damage accumulation,and freezing depth development,with clear stagedependent and threshold-driven patterns.This work provides not only a quantitative explanation of instability mechanisms in cold-region rock masses but also practical guidance for engineering stability assessment and disaster mitigation.展开更多
The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remain...The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs.展开更多
The exchange of energy and water between the lithosphere and atmosphere mainly takes place at the ground surface. Therefore, freeze/thaw condition at the ground surface is an important factor in ex- amining the intera...The exchange of energy and water between the lithosphere and atmosphere mainly takes place at the ground surface. Therefore, freeze/thaw condition at the ground surface is an important factor in ex- amining the interactions between the land surface and atmosphere. Based on the observation data obtained by CEOP/CAMP-Tibet, the diurnal freeze/thaw cycles of the ground surface near Naqu, central Tibetan Plateau was preliminarily analyzed. The results show that the surface layer was completely frozen for approximately one month. However, the time that the ground surface experienced diurnal freeze/thaw cycles was about 6 months. The high frequency of freeze/thaw cycles at the ground surface significantly influences water and energy exchanges between ground and atmosphere over half a year. The interaction processes between the ground and atmosphere under different soil conditions (such as complete thaw, complete freeze and diurnal freeze/thaw cycles) are issues worthy of further examina- tion.展开更多
Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a m...Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.展开更多
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in t...Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.展开更多
Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. H...Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. However, uneven subsidence, pavement cracks and other related damages can affect the integrity of loess subgrade after several years of operation,and even cause some hazards, especially in North China, where the strong freeze-thaw erosion occurs. In this study, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement,microstructure, and the related mechanisms were addressed. The experimental results showed that an obvious water migration and redistribution occurred within the samples during freeze-thaw cycles. Ice lenses and fissures could be identified in the upper frozen layers of the samples. After freeze-thaw cycles,the dry densities of the upper layers of samples changed significantly due to strong freeze-thaw erosion. The dry densities decreased for the dense sample and increased for the loose sample. It can be found that dense samples become loose, while loose samples became dense with the increasing number of freeze-thaw cycles. Their related void ratios changed reversely. Both void ratios tended to fall into a certain range, which verified the concept of a residual void ratio proposed by Viklander. The loosening process of densely compacted samples involves the formation of large pores, volume increase and density reduction as well as the related changes in mechanical properties because freeze-thaw cycles may be important contribution to problems of loess road embankments.Adverse effects of freeze-thaw cycles, therefore,should be taken into account in selecting loess parameters for the stability evaluation of road embankment in seasonally frozen ground regions.展开更多
The near-surface freeze/thaw cycle in cold regions plays a major role in the surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,the Community Land Model,Version 4 and a suite of high-...The near-surface freeze/thaw cycle in cold regions plays a major role in the surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,the Community Land Model,Version 4 and a suite of high-resolution atmospheric data were used to investigate the changes in the near-surface soil freeze/thaw cycle in response to the warming on the Tibetan Plateau from1981 to 2010.The in situ observations-based validation showed that,considering the cause of scale mismatch in the comparison,the simulated soil temperature,freeze start and end dates,and freeze duration at the near-surface were reasonable.In response to the warming of the Tibetan Plateau at a rate of approximately 0.44°C decade-1,the freeze start-date became delayed at an area-mean rate of1.7 days decade-1,while the freeze end-date became advanced at an area-mean rate of 4.7 days decade-1.The delaying of the freeze start-date,which was combined with the advancing of the freeze end-date,resulted in a statistically significant shortening trend with respect to the freeze duration,at an area-mean rate of 6.4 days decade-1.Such changes would strongly affect the surface energy flux,hydrological processes,and vegetation dynamics.We also found that the rate of freeze-duration shortening at the near-surface soil layer was approximately 3.0 days decade-1lower than that at a depth of 1 m.This implied that the changes in soil freeze/thaw cycles at the near surface cannot be assumed to reflect the situation in deeper soil layers.The significant correlations between freeze duration and air temperature indicated that the shortening of the near-surface freeze duration was caused by the rise in air temperature,which occurred especially in spring,followed by autumn.These results can be used to reveal the laws governing the response of the near-surface freeze/thaw cycle to climate change and indicate related changes in permafrost.展开更多
Freeze-thaw cycles are closely related to the slope instability in high-altitude mountain regions.In this study,cohesive coarse-grained soils were collected from a high-altitude slope in the Qinghai–Tibet Plateau to ...Freeze-thaw cycles are closely related to the slope instability in high-altitude mountain regions.In this study,cohesive coarse-grained soils were collected from a high-altitude slope in the Qinghai–Tibet Plateau to study the effect of cyclic freeze-thaw on their uniaxial mechanical properties.The soil specimens were remolded with three dry densities and three moisture contents.Then,after performing a series of freeze-thaw tests in a closed system without water supply,the soil specimens were subjected to a uniaxial compression test.The results showed that the stress-strain curves of the tested soils mainly performed as strain-softening.The softening feature intensified with the increasing dry density but weakened with an increase in freeze-thaw cycles and moisture content.The uniaxial compressive strength,resilient modulus,residual strength and softening modulus decreased considerably with the increase of freeze-thaw cycles.After more than nine freeze-thaw cycles,these four parameters tended to be stable.These parameters increased with the increase of dry density and decreased with the increasing moisture content,except for the residual strength which did not exhibit any clear variation with an increase in moisture content.The residual strength,however,generally increased with an increase in dry density.The soil structural damage caused by frozen water expansion during the freeze-thaw is the major cause for the changes in mechanical behaviors of cohesive coarse-grained soils.With results in this study,the deterioration effect of freeze-thaw cycles on the mechanical properties of soils should be considered during the slope stability analysis in high-altitude mountain regions.展开更多
Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing.Cracking can also occur in expansive clayey soils under freeze–thaw cycles,of which little attention ...Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing.Cracking can also occur in expansive clayey soils under freeze–thaw cycles,of which little attention has been paid on this issue.In this study,laboratory experiment and cracking analysis were performed on an expansive soil.Crack patterns were quantitatively analyzed using the fractal concept.The relationships among crack pattern,water loss,number of freeze–thaw cycles,and fractal dimension were discussed.It was found that crack patterns on the surface exhibit a hierarchical network structure that is fractal at a statistical level.Cracks induced by freeze–thaw cycles are shorter,more irregularly oriented,and slowly evolves from an irregularly rectilinear pattern towards a polygonal or quasi–hexagonal one;water loss,closely related to specimen thickness,plays a significant role in the process of soil cracking;crack development under freeze-thaw cycles are not only attributed to capillary effect,but also to expansion and absorption effects.展开更多
The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses ...The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period.展开更多
This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor(QTEC), China. The QTEC is known as a ...This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor(QTEC), China. The QTEC is known as a critical infrastructure and passage connecting inland China and the Qinghai–Tibet Plateau(QTP). Three technologies—global navigation satellite system(GNSS), terrestrial laser scanning(TLS), and unmanned aerial vehicle(UAV)—were used to estimate the freeze/thaw–induced 3D surface deformation of two frost mounds. Our results showed that (1) the two frost mounds exhibited mainly thaw settlement in thawing periods and frost heave in the freezing period, but frost heave dominated after repeated freeze–thaw cycles;(2) different zones of the mounds showed different deformation characteristics;(3) active-layer thickness(ALT) and elevation changes were highly correlated during thaw periods;(4) integrated 3D-measurement technologies can achieve a better understanding and assessment of hazards in the permafrost area.展开更多
The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed...The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.展开更多
To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of f...To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of freeze-thaw and defined as a type of clayey silt under confining pressures of 100,200,and 300 kPa.Taking the number of freeze-thaw cycles,cooling temperature,initial dry density,and moisture content as the four main influencing factors of shear behavior of the tailings samples,the shear stress-strain curve,compression modulus,failure strength,cohesion,and internal friction angle were measured.The results show that the freeze-thaw cycle has an obvious weakening effect on the shear behavior of the tailings material,and the shear mechanical parameters are affected by a combination of confining pressure,freeze-thaw cycle condition,and initial physical-mechanical properties of the tailings samples.Through the microstructural analysis of the tailings samples subjected to freeze-thaw cycles,it shows that the freeze-thaw cycle mainly affects the porosity,bound water,and arrangement of the tailings particles.Subsequently,the macroscopic changes in shear strength indexes emerge,and then the stability of the tailings dam will decrease.展开更多
Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there ...Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there is a lack of in situ research on the characteristics of soil N_2 O concentration and flux in response to variations in soil properties caused by FTCs.Here, we report the effect of FTC-induced changes in soil properties on the soil N_2 O concentration and flux in the permafrost region of the higher reaches of the Shule River Basin on the northeastern margin of the QTP. We measured chemical properties of the topsoil, activities of soil microorganisms, and air temperature(AT), as well as soil N_2 O concentration and flux, over an annual cycle from July 31, 2011, to July 30, 2012. The results showed that soil N_2 O concentration was significantly affected by soil temperature(ST), soil moisture(SM), soil salinity(SS), soil polyphenol oxidase(SPO), soil alkaline phosphatase(SAP), and soil culturable actinomycetes(SCA), ranked as SM>SS>ST>SPO>SAP>SCA, whereas ST significantly increased soil N_2 O flux, compared with SS. Overall, our study indicated that the soil N_2 O concentration and flux in permafrost zone FTCs were strongly affected by soil properties, especially soil moisture, soil salinity, and soil temperature.展开更多
Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-th...Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.展开更多
The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research pri...The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time.展开更多
基金Supported by the National Natural Science Foundation of China (No.20206030) and Ministry of Science and Technology 863 Hi-Technology Research and Development Program of China (2005AA501660).
文摘At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation.
基金supported by projects from the National Natural Science Foundation of China (41807298, 41702372, 41672211)the China Postdoctoral Science Foundation (2019M650788)+2 种基金National Key Research and Development Project of China (2016YFC0600310)the China Geological Survey (DD20160022, DD20190059)the Basic Research Funds (JYYWF201810) of the Institute of Geology, CAGS.
文摘With the objective of establishing a distinction between deformation structures caused by freeze/thaw cycles and those resulting from seismic activity, we studied three well–exposed alluvial deposits in a section at Dogai Coring, northern Qiangtang Basin, Tibetan Plateau. Deformation is present in the form of plastic structures(diapirs, folds and clastic dykes), brittle structures(micro–faults) and cryogenic wedges. These soft–sediment deformation features(except the micro–faults) are mainly characterized by meter–scale, non–interlayered, low–speed and low–pressure displacements within soft sediments, most commonly in the form of plastic deformation. Taking into account the geographic setting, lithology and deformation features, we interpret these soft–sediment deformation features as the products of freeze/thaw cycles, rather than of earthquake–induced shock waves, thus reflecting regional temperature changes and fluctuations of hydrothermal conditions in the uppermost sediments. The micro–faults(close to linear hot springs) are ascribed to regional fault activity;however, we were unable to identify the nature of the micro–faults, perhaps due to disturbance by subsequent freeze/thaw cycles. This study may serve as a guide to recognizing the differences between deformation structures attributed to freeze/thaw cycles and seismic processes.
文摘The mechanical properties of polyvinyl alcohol (PVA) films prepared by evaporating water from freeze/thaw cycled gel were investigated as a function of the number of freeze/thaw cycles. The maximum stress of the PVA film prepared by freeze/thaw cycling was larger than that prepared without the freeze/thaw cycle process. The largest maximum stress was 46.2 MPa for a film prepared with 10 freeze/thaw cycles, which was twice as large as that for a cast PVA film without freeze/thaw cycling (22.3 MPa). This is due to the formation of small crystallites during the freeze/thaw cycle process. Furthermore, when the film was annealed at 130°C, the maximum stress was as high as 181 MPa which was comparable to that for PVA films prepared using additives. The crystallinity is not the main factor that determines the maximum stress for either the non-annealed or annealed freeze/thaw cycled films, but the glass transition temperature is well correlated with the maximum stress, irrespective of the annealing process. This is due to the different molecular morphology;the non-annealed freeze/thaw cycled film consists of many small crystallites, but the annealed film consists of larger crystallites formed during the annealing process.
基金The authors express their gratitude to the financial support from National Key R&D Program of China(No.2023YFB2604001)National Natural Science Foundation of China(No.52478475,No.52378463 and No.52168066).
文摘The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in frozen regions remains underexplored.In seasonally frozen areas,F-T(freeze-thaw)cycles threaten subgrade stability,necessitating research on pile-plate structure’s behavior under such conditions.To address this challenge,a scaled model experiment was conducted on a silty sand foundation,simulating F-T cycles using temperature control devices.Key parameters,including soil temperature,frozen depth,and displacement,were systematically monitored.Results indicate that the bearing plate functions as an effective insulation layer,significantly reducing sub-zero temperature penetration.Additionally,the anchoring action of the piles mitigates frost heave in the foundation soil,while the plate middle restrains soil deformation more effectively due to increased constraint.The thermal insulation provided by the plate maintains higher soil temperatures,delaying the onset of freezing.By the end of each freezing stage,the vertical displacement in the natural subgrade is approximately 4 times greater than that beneath the pile-plate structure.Furthermore,the frost depth is about 1.3-1.4 times and 1.6-4.9 times greater than that measured below the plate edge and middle,respectively.These insights contribute to the development of more resilient designs for high-speed railway subgrades in seasonally frozen regions,offering engineers a robust,scientifically-backed foundation for future infrastructure projects.
基金the financial support provided by the Major Science and Technology Project of Xinjiang Uygur Autonomous Region(Grant NO.2024A01003)the National Natural Science Foundation of China(Grant NO.51508556)+3 种基金the Key Support Project of the National Natural Science Foundation of China Joint Fund(Grant No.U24B2039)the Natural Science Foundation of Jiangxi Province(Grant NO.20232BAB203079,20224BAB213045)Program of China Scholarship Council(Grant NO.202406430056)the Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMTB)(Grant NO.BBJ2025081)。
文摘Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability and often triggers collapses or landslides.Existing studies focus mostly on singlescale or single-factor analyses but cannot fully capture the coupled mechanisms driving instability under freeze-thaw conditions.This study aimed to establish a theoretical framework to quantitatively characterize the evolution of rock mass stability,thereby providing a sound basis for hazard prediction and prevention.By integrating limit equilibrium theory with rock frost heave and circular hole expansion theory,mechanical models for sliding-and toppling-type dangerous rock masses were established.Three key factors were incorporated:frost heave forces acting on throughgoing structural planes,rock property deterioration in nonpenetrative sections,and progressive freezing depth development.A theoretical relationship between the stability coefficient and the number of freeze-thaw cycles was derived.By considering the Zimei Peaks rock masses in Gansu Province as the case study and conducting parametric analyses,the results revealed that the stability coefficient rapidly decreases during the initial cycles,followed by a slower decrease and eventual stabilization.The coefficient decreased 4.5 times more during the first 15 cycles than during the subsequent 15 cycles.Moreover,stability degradation was strongly influenced by the freezing temperature,initial porosity,and rock debris loss ratio,with critical thresholds determined at a 3.8%porosity and a 0.83 debris loss ratio.The findings indicated that stability deterioration is governed by the coupled effects of frost heave loading,microstructural damage accumulation,and freezing depth development,with clear stagedependent and threshold-driven patterns.This work provides not only a quantitative explanation of instability mechanisms in cold-region rock masses but also practical guidance for engineering stability assessment and disaster mitigation.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.52350004 and 51925903).
文摘The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs.
基金Supported by the National Key Basic Research Program (Grant No. 2005CB422004)the National Natural Science Foundation of China (Grant No. 40571036)+1 种基金the Cen-tury Program of CAS (Grant No. 2004401)the Talent Program of CAREERI, CAS
文摘The exchange of energy and water between the lithosphere and atmosphere mainly takes place at the ground surface. Therefore, freeze/thaw condition at the ground surface is an important factor in ex- amining the interactions between the land surface and atmosphere. Based on the observation data obtained by CEOP/CAMP-Tibet, the diurnal freeze/thaw cycles of the ground surface near Naqu, central Tibetan Plateau was preliminarily analyzed. The results show that the surface layer was completely frozen for approximately one month. However, the time that the ground surface experienced diurnal freeze/thaw cycles was about 6 months. The high frequency of freeze/thaw cycles at the ground surface significantly influences water and energy exchanges between ground and atmosphere over half a year. The interaction processes between the ground and atmosphere under different soil conditions (such as complete thaw, complete freeze and diurnal freeze/thaw cycles) are issues worthy of further examina- tion.
基金Projects(41672312, 41972294) supported by the National Natural Science Foundation of ChinaProject(2017CFA056) supported by the Outstanding Youth Foundation of Hubei Province, ChinaProject(KFJ170104) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, China。
文摘Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.
基金funded by the National Natural Science Foundation of China(Grant No.41401611,41301072)China Postdoctoral Science Foundation(Grant No.2014M560817,2015T81069)the Open Project Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE201208)
文摘Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.
基金supported by the National Key Basic Research Program of China(973 Program)(Grant No.2012CB026106)National Natural Science Foundation of China(No.41672310)+3 种基金the Science and Technology Major Project of Gansu Province(Grant No.143GKDA007)National key research and development program(2016YFC0802103)the West Light Foundation of CAS for Dr.G.Y.Li,Project of the State Key Laboratory of Frozen Soils Engineering of CAS(Grant No.SKLFSE-ZY-16)the STS research project of the Cold and Arid Regions Environmental and Engineering Research Institute(HHS-TSS-STS-1502)
文摘Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. However, uneven subsidence, pavement cracks and other related damages can affect the integrity of loess subgrade after several years of operation,and even cause some hazards, especially in North China, where the strong freeze-thaw erosion occurs. In this study, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement,microstructure, and the related mechanisms were addressed. The experimental results showed that an obvious water migration and redistribution occurred within the samples during freeze-thaw cycles. Ice lenses and fissures could be identified in the upper frozen layers of the samples. After freeze-thaw cycles,the dry densities of the upper layers of samples changed significantly due to strong freeze-thaw erosion. The dry densities decreased for the dense sample and increased for the loose sample. It can be found that dense samples become loose, while loose samples became dense with the increasing number of freeze-thaw cycles. Their related void ratios changed reversely. Both void ratios tended to fall into a certain range, which verified the concept of a residual void ratio proposed by Viklander. The loosening process of densely compacted samples involves the formation of large pores, volume increase and density reduction as well as the related changes in mechanical properties because freeze-thaw cycles may be important contribution to problems of loess road embankments.Adverse effects of freeze-thaw cycles, therefore,should be taken into account in selecting loess parameters for the stability evaluation of road embankment in seasonally frozen ground regions.
基金supported by the National Natural Science Foundation of China (41130103 and 41210007)
文摘The near-surface freeze/thaw cycle in cold regions plays a major role in the surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,the Community Land Model,Version 4 and a suite of high-resolution atmospheric data were used to investigate the changes in the near-surface soil freeze/thaw cycle in response to the warming on the Tibetan Plateau from1981 to 2010.The in situ observations-based validation showed that,considering the cause of scale mismatch in the comparison,the simulated soil temperature,freeze start and end dates,and freeze duration at the near-surface were reasonable.In response to the warming of the Tibetan Plateau at a rate of approximately 0.44°C decade-1,the freeze start-date became delayed at an area-mean rate of1.7 days decade-1,while the freeze end-date became advanced at an area-mean rate of 4.7 days decade-1.The delaying of the freeze start-date,which was combined with the advancing of the freeze end-date,resulted in a statistically significant shortening trend with respect to the freeze duration,at an area-mean rate of 6.4 days decade-1.Such changes would strongly affect the surface energy flux,hydrological processes,and vegetation dynamics.We also found that the rate of freeze-duration shortening at the near-surface soil layer was approximately 3.0 days decade-1lower than that at a depth of 1 m.This implied that the changes in soil freeze/thaw cycles at the near surface cannot be assumed to reflect the situation in deeper soil layers.The significant correlations between freeze duration and air temperature indicated that the shortening of the near-surface freeze duration was caused by the rise in air temperature,which occurred especially in spring,followed by autumn.These results can be used to reveal the laws governing the response of the near-surface freeze/thaw cycle to climate change and indicate related changes in permafrost.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1505001)the Key Scientific Research Project of China Gold Group(Grant No.2016ZGHJ/XZHTL-YQSC-26)+1 种基金the funding from the Department of Transportation of Gansu Province(Grant No.2017-008)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102268716)
文摘Freeze-thaw cycles are closely related to the slope instability in high-altitude mountain regions.In this study,cohesive coarse-grained soils were collected from a high-altitude slope in the Qinghai–Tibet Plateau to study the effect of cyclic freeze-thaw on their uniaxial mechanical properties.The soil specimens were remolded with three dry densities and three moisture contents.Then,after performing a series of freeze-thaw tests in a closed system without water supply,the soil specimens were subjected to a uniaxial compression test.The results showed that the stress-strain curves of the tested soils mainly performed as strain-softening.The softening feature intensified with the increasing dry density but weakened with an increase in freeze-thaw cycles and moisture content.The uniaxial compressive strength,resilient modulus,residual strength and softening modulus decreased considerably with the increase of freeze-thaw cycles.After more than nine freeze-thaw cycles,these four parameters tended to be stable.These parameters increased with the increase of dry density and decreased with the increasing moisture content,except for the residual strength which did not exhibit any clear variation with an increase in moisture content.The residual strength,however,generally increased with an increase in dry density.The soil structural damage caused by frozen water expansion during the freeze-thaw is the major cause for the changes in mechanical behaviors of cohesive coarse-grained soils.With results in this study,the deterioration effect of freeze-thaw cycles on the mechanical properties of soils should be considered during the slope stability analysis in high-altitude mountain regions.
基金supported by"the Fundamental Research Funds for the Central Universities"(Grant No.2015B25014)"the Practical Innovation Program for Postgraduate Students of Jiangsu Province,China"(Grant No.SJZZ15_0058)+1 种基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(Grant No.3014–SYS1401)the organizing committee of"XI International Symposium on Permafrost Engineering(Magadan,Russia,Sept.5-8,2017)"for giving the opportunity to exchange this study
文摘Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing.Cracking can also occur in expansive clayey soils under freeze–thaw cycles,of which little attention has been paid on this issue.In this study,laboratory experiment and cracking analysis were performed on an expansive soil.Crack patterns were quantitatively analyzed using the fractal concept.The relationships among crack pattern,water loss,number of freeze–thaw cycles,and fractal dimension were discussed.It was found that crack patterns on the surface exhibit a hierarchical network structure that is fractal at a statistical level.Cracks induced by freeze–thaw cycles are shorter,more irregularly oriented,and slowly evolves from an irregularly rectilinear pattern towards a polygonal or quasi–hexagonal one;water loss,closely related to specimen thickness,plays a significant role in the process of soil cracking;crack development under freeze-thaw cycles are not only attributed to capillary effect,but also to expansion and absorption effects.
基金Funded by the Durability and Life Forecast of Shotcrete Tunnel Structure Fund(No.51278403)the Program for Changjiang Scholars and Innovative Research Team in University
文摘The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period.
基金supported by the National Natural Science Foundation of China (41301508, 41630636)
文摘This paper presents various deformation-monitoring technologies employed to monitor the frost heave and thaw settlement of two mounds along the Qinghai–Tibet Engineering Corridor(QTEC), China. The QTEC is known as a critical infrastructure and passage connecting inland China and the Qinghai–Tibet Plateau(QTP). Three technologies—global navigation satellite system(GNSS), terrestrial laser scanning(TLS), and unmanned aerial vehicle(UAV)—were used to estimate the freeze/thaw–induced 3D surface deformation of two frost mounds. Our results showed that (1) the two frost mounds exhibited mainly thaw settlement in thawing periods and frost heave in the freezing period, but frost heave dominated after repeated freeze–thaw cycles;(2) different zones of the mounds showed different deformation characteristics;(3) active-layer thickness(ALT) and elevation changes were highly correlated during thaw periods;(4) integrated 3D-measurement technologies can achieve a better understanding and assessment of hazards in the permafrost area.
基金the National Natural Science Foundation of China(No.50479059)
文摘The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.
文摘To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of freeze-thaw and defined as a type of clayey silt under confining pressures of 100,200,and 300 kPa.Taking the number of freeze-thaw cycles,cooling temperature,initial dry density,and moisture content as the four main influencing factors of shear behavior of the tailings samples,the shear stress-strain curve,compression modulus,failure strength,cohesion,and internal friction angle were measured.The results show that the freeze-thaw cycle has an obvious weakening effect on the shear behavior of the tailings material,and the shear mechanical parameters are affected by a combination of confining pressure,freeze-thaw cycle condition,and initial physical-mechanical properties of the tailings samples.Through the microstructural analysis of the tailings samples subjected to freeze-thaw cycles,it shows that the freeze-thaw cycle mainly affects the porosity,bound water,and arrangement of the tailings particles.Subsequently,the macroscopic changes in shear strength indexes emerge,and then the stability of the tailings dam will decrease.
基金supported by the National Science Foundation of China(41690142)the Key Project of Chinese Academy of Sciences(KJZD-EW-G03-04)+1 种基金the National Natural Science Foundation of China(41171054)the National Science&Technology Pillar Program(2014BAC05B02)
文摘Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there is a lack of in situ research on the characteristics of soil N_2 O concentration and flux in response to variations in soil properties caused by FTCs.Here, we report the effect of FTC-induced changes in soil properties on the soil N_2 O concentration and flux in the permafrost region of the higher reaches of the Shule River Basin on the northeastern margin of the QTP. We measured chemical properties of the topsoil, activities of soil microorganisms, and air temperature(AT), as well as soil N_2 O concentration and flux, over an annual cycle from July 31, 2011, to July 30, 2012. The results showed that soil N_2 O concentration was significantly affected by soil temperature(ST), soil moisture(SM), soil salinity(SS), soil polyphenol oxidase(SPO), soil alkaline phosphatase(SAP), and soil culturable actinomycetes(SCA), ranked as SM>SS>ST>SPO>SAP>SCA, whereas ST significantly increased soil N_2 O flux, compared with SS. Overall, our study indicated that the soil N_2 O concentration and flux in permafrost zone FTCs were strongly affected by soil properties, especially soil moisture, soil salinity, and soil temperature.
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)the Fundamental Research Funds for the Central Universities (No. 2011JBZ009)
文摘Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.
基金supported in part by the National Natural Science Foundation of China(No.41301070)the West Light Program for Talent Cultivation of Chinese Academy of Sciencesthe project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,which granted to Dr.Ze Zhang
文摘The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time.