期刊文献+
共找到31,557篇文章
< 1 2 250 >
每页显示 20 50 100
Thick free-standing electrode based on carbon-carbon nitride microspheres with large mesopores for high-energy-density lithium-sulfur batteries 被引量:2
1
作者 Hui-Ju Kang Tae-Gyu Lee +8 位作者 Heejin Kim Jae-Woo Park Hyun Jin Hwang Hyeonseok Hwang Kwang-Suk Jang Hae Jin Kim Yun Suk Huh Won Bin Im Young-Si Jun 《Carbon Energy》 CAS 2021年第3期410-423,共14页
The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur c... The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur cathodes,which have rarely been realized due to massive passivation and shuttling.Herein,microspheres of a carbon-carbon nitride composite(C@CN)with large mesopores are fabricated via molecular cooperative assembly.Using the C@CN-based electrodes,the effects of the large mesopores and N-functional groups on the electrochemical behavior of sulfur in LSB cells are thoroughly investigated under ultrahigh sulfur-loading conditions(>15 mgS cm^(-2)).Furthermore,for high-energy-density LSBs,the C@CN powders are pelletized into a thick free-standing electrode(thickness:500^m;diameter:11 mm)via a simple briquette process;here,the total amount of energy stored by the LSB cells is 39 mWh,corresponding to a volumetric energy density of 440 Wh L-1 with an areal capacity of 24.9 and 17.5 mAh cm^(-2) at 0.47 and 4.7 mA cm^(-2),respectively(at 24mgS cm^(-2)).These results have significantly surpassed most recent records due to the synergy among the large mesopores,(poly)sulfide-philic surfaces,and thick electrodes.The developed strategy with its potential for scale-up successfully fills the gap between laboratory-scale cells and practical cells without sacrificing the high areal capacity and high energy density,providing a solid foundation for the development of practical LSBs. 展开更多
关键词 briquette process carbon nitride free-standing electrode high energy density lithium-sulfur batteries MESOPORES
在线阅读 下载PDF
Water Evaporation Triggered Self-Assembly of MXene on Non-Carbonized Wood with Well-Aligned Channels as Size-Customizable Free-Standing Electrode for Supercapacitors
2
作者 Weimin Chen Zhao Li +6 位作者 Feng Jiang Min Luo Kai Yang Daotong Zhang Wangwang Xu Chaozheng Liu Xiaoyan Zhou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期347-354,共8页
Herein,non-carbonized wood-based electrodes and separators with well-aligned channels and excellent mechanical properties are developed for supercapacitors.To enhance the conductivity and boost the capacitance,Ti_(3)C... Herein,non-carbonized wood-based electrodes and separators with well-aligned channels and excellent mechanical properties are developed for supercapacitors.To enhance the conductivity and boost the capacitance,Ti_(3)C_(2)(MXene)nanosheets with high electrical conductivity and excellent electrochemical activity are loaded into the wood cells via self-assembly triggered by fast evaporating water in Ti_(3)C_(2)suspension.By the assistance of positive charged polydopamine microspheres with large surface area,the self-restacking of Ti_(3)C_(2)nanosheets can be avoided and the high mass loading(50 wt%)can be achieved due to the extra driving force for Ti_(3)C_(2)absorption.Benefiting from the conductive Ti_(3)C_(2)nanosheets with massive active sites and the multiple well-aligned channels in wood with efficient transportation pathways for charge carriers,the as-designed free-standing electrode shows a large areal capacitance of 1060 mF cm^(-2)at 0.5 mA cm^(-2)and high capacitance retention of 67%at 10 mA cm^(-2).Also,this electrode is highly size-customizable,showing a good ability to be industrially processed into various shapes and dimensions.Furthermore,an all-wood based supercapacitor with Ti_(3)C_(2)/wood composites as two layers of electrodes and a wood slice as the separator is fabricated,presenting a high energy density of 10.5μW h cm^(-2)at 389.9μW cm^(-2). 展开更多
关键词 free-standing electrode MXene nanosheets polydopamine microspheres supercapacitor wood slice with well-aligned channels
在线阅读 下载PDF
Bismuth-Based Free-Standing Electrodes for Ambient-Condition Ammonia Production in Neutral Media 被引量:3
3
作者 Ying Sun Zizhao Deng +7 位作者 Xi‑Ming Song Hui Li Zihang Huang Qin Zhao Daming Feng Wei Zhang Zhaoqing Liu Tianyi Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期164-175,共12页
Electrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions.Here,we report the synthesis of nanosized Bi2O3 particles grown on f... Electrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions.Here,we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene(Bi2O3/FEG)via a facile electrochemical deposition method.The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2%and a large NH3 yield of 4.21±0.14μgNH3 h^-1 cm^-2 at-0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4,better than that in the strong acidic and basic media.Benefiting from its strong interaction of Bi 6p band with the N2p orbitals,binder-free characteristic,and facile electron transfer,Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts.This study is significant to design low-cost,high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis. 展开更多
关键词 N2 reduction Bi2O3 nanoplate ELECTROCATALYSIS free-standing
在线阅读 下载PDF
Dry Electrode Processing for Free-Standing Supercapacitor Electrodes with Longer Life,Higher Volumetric Outputs,and Reduced Environmental Impact
4
作者 Emmanuel Pameté Jean G.A.Ruthes +4 位作者 Marius Hermesdorf Anna Seltmann Delvina J.Tarimo Desirée Leistenschneider Volker Presser 《Energy & Environmental Materials》 2025年第1期43-57,共15页
Supercapacitors are efficient and versatile energy storage devices,offering remarkable power density,fast charge/discharge rates,and exceptional cycle life.As research continues to push the boundaries of their perform... Supercapacitors are efficient and versatile energy storage devices,offering remarkable power density,fast charge/discharge rates,and exceptional cycle life.As research continues to push the boundaries of their performance,electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors.Herein,we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors.Notably,our study explores the performance of these electrodes in three different types of electrolytes:organic,ionic liquids,and quasi-solid states.By examining the impact of dry electrode processing on various electrode and electrolyte systems,we show valuable insights into the versatility and efficacy of this technique.The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes,with a lifespan extension of+45%in organic,+192%in ionic liquids,and+84%in quasi-solid electrolytes.Moreover,the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs,enhancing energy storage capacities within compact form factors.Notably,dry electrode-prepared supercapacitors outperformed their wet electrode counterparts,exhibiting a higher energy density of 6.1 Wh cm^(-3)compared with 4.7 Wh cm^(-3)at a high power density of 195Wcm^(-3),marking a substantial 28%energy improvement in the quasi-solid electrolyte. 展开更多
关键词 dry electrodes processing long-term stability SUPERCAPACITORS sustainability
在线阅读 下载PDF
Flexible free-standing graphene-like film electrode for supercapacitors by electrophoretic deposition and electrochemical reduction 被引量:6
5
作者 窦元运 罗民 +3 位作者 梁森 张学玲 丁肖怡 梁斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1425-1433,共9页
Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrop... Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors. 展开更多
关键词 free-standing graphene-like film SUPERCAPACITOR electrophoretic deposition electrochemical reduction FLEXIBILITY
在线阅读 下载PDF
Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection 被引量:3
6
作者 Shichao Du Zhiyu Ren +2 位作者 Jun Wu Wang Xi Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2260-2269,共10页
Highly sensitive, selective, and stable hydrogen peroxide (H2O2) detection using nanozyme-based catalysts are desirable for practical applications. Herein, vertical α-FeOOH nanowires were successfully grown on the ... Highly sensitive, selective, and stable hydrogen peroxide (H2O2) detection using nanozyme-based catalysts are desirable for practical applications. Herein, vertical α-FeOOH nanowires were successfully grown on the surface of carbon fiber paper (CFP) via a low-temperature hydrothermal procedure. The formation of vertical α-FeOOH nanowires is ascribed to the structure-directing role of sodium dodecyl sulfate. The resulting free-standing electrode with one-dimensional (1D) nanowires offers oriented channels for fast charge transfer, excellent electrical contact between the electrocatalyst and the current collector, and good mechanical stability and reproducibility. Thus, it can serve as an efficient electrocatalyst for the reduction and sensitive detection of H2O2. The relation of the oxidation current of H202 with the concentration is linear from 0.05 to 0.5 mM with a sensitivity of -0.194 mA/(mM.cm2) and a low detection limit of 18μM. Furthermore, the portability in the geometric tailor and easy device fabrication allow extending the general applicability of this free-standing electrode to chemical and biological sensors. 展开更多
关键词 α-FeOOH nanowires free-standing electrode synergistic effect electrocatalysis H2O2 detection
原文传递
Bulk preparation of free-standing single-iron-atom catalysts directly as the air electrodes for high-performance zinc-air batteries 被引量:3
7
作者 Hong-Bo Zhang Yu Meng +11 位作者 Hong Zhong Lili Zhang Shichao Ding Lingzhe Fang Tao Li Yi Mei Peng-Xiang Hou Chang Liu Scott P.Beckman Yuehe Lin Hui-Ming Cheng Jin-Cheng Li 《Carbon Energy》 SCIE CSCD 2023年第5期57-66,共10页
The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggis... The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices. 展开更多
关键词 atomic Fe-N_(5)species free-standing electrode large-scale preparation oxygen reduction reaction zinc-air battery
在线阅读 下载PDF
Advancements in chromium-tolerant air electrode for solid oxide cells:A mini-review 被引量:1
8
作者 HUANG Jiongyuan CHEN Zhiyi +3 位作者 LUO Yujie AI Na JIANG Sanping CHEN Kongfa 《燃料化学学报(中英文)》 北大核心 2025年第2期249-261,共13页
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi... Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs. 展开更多
关键词 solid oxide cells air electrodes Cr poisoning surface modification
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
9
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Free-Standing α-MoO_(3)/Ti_(3)C_(2) MXene Hybrid Electrode in Water-in-Salt Electrolytes
10
作者 Mohit Saraf Christopher E.Shuck +5 位作者 Nazgol Norouzi Kyle Matthews Alex Inman Teng Zhang Ekaterina Pomerantseva Yury Gogotsi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期6-14,共9页
While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer meta... While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer metallic conductivity,but their capacitance is limited in aqueous electrolytes.Insertion of partially solvated cations into Ti_(3)C_(2)MXene from lithium-based water-in-salt(WIS)electrolytes enables charge storage at positive potentials,allowing a wider potential window and higher capacitance.Herein,we demonstrate that α-MoO_(3)/Ti_(3)C_(2)hybrids combine the high capacity of α-MoO_(3)and conductivity of Ti_(3)C_(2)in WIS(19.8 m LiCI)electrolyte in a wide1.8 V voltage window.Cyclic voltammograms reveal multiple redox peaks from α-MoO_(3)in addition to the well-separated peaks of Ti_(3)C_(2)in the hybrid electrode.This leads to a higher specific charge and a higher rate capability compared to a carbon and binder containing α-MoO_(3)electrode.These results demonstrate that the addition of MXene to less conductive oxides eliminates the need for conductive carbon additives and binders,leads to a larger amount of charge stored,and increases redox capacity at higher rates.In addition,MXene encapsulated α-MoO_(3)showed improved electrochemical stability,which was attributed to the suppressed dissolution of α-MoO_(3).The work suggests that oxide/MXene hybrids are promising for energy storage. 展开更多
关键词 free-standing electrode Ti_(3)C_(2)MXene water-in-salt electrolytes α-MoO_(3)nanobelts
在线阅读 下载PDF
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
11
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) Membrane electrode assembly Mass transfer Gas diffusion electrode Computational fluid dynamics
原文传递
High‑Entropy Electrode Materials:Synthesis,Properties and Outlook
12
作者 Dongxiao Li Chang Liu +7 位作者 Shusheng Tao Jieming Cai Biao Zhong Jie Li Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期472-506,共35页
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c... High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials. 展开更多
关键词 High-entropy Energy storage electrode materials
在线阅读 下载PDF
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
13
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode Liquid metal electrodes SODIUM MAGNESIUM
在线阅读 下载PDF
High-Performance Supercapacitor Electrodes from Optimized Single-Step Carbonized Michelia Champaca Biomass 被引量:1
14
作者 Dibyashree Shrestha 《Journal of Environmental & Earth Sciences》 2025年第6期1-22,共22页
This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through... This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through single-step carbonization at 400℃ and 500℃(SSC-400℃ and SSC-500℃) and double-step carbonization at 400℃(DSC-400℃),with all samples activated using H_(3)PO_(4).The effects of carbonization stratergy on the structural,morphological,and electrochemical characteristics of the resulting carbon materials were systematically evaluated,using techniques such as BET,SEM,TEM,XRD,Raman scattering,FTIR,CV,GCD and EIS.Among the samples,SSC-400℃ exhibited the best electrochemical performance,achieving a specific capacitance of 292.2 Fg^(-1),an energy density of 6.4 Wh kg^(-1),and a power density of 198.4 W kg^(-1).This superior performance is attributed to its optimized pore structure,improved sur-face functionality and enhanced conductivity.SSC-500℃showed marginally lower performance,whereas,DSC-400℃ displayed the least favorable results,indicating that double-step carbonization process may negatively affect material quality by disrupting the pore network.This work highlights a strong correlation between synthesis methodology and electrochemical efficiency,directly reinforcing the importance of process optimization in electrode material develop-ment.The findings contribute to the broader goal of developing cost-effective,renewable and environmentally friendly energy storage systems.By valorizing biomass waste,the study supports global movements toward green energy technologies and circular carbon economies,offering a viable pathway for sustainable supercapacitor development and practical applications in energy storage devices. 展开更多
关键词 Michelia Champaca Wood Activated Carbon Supercapacitor electrodes CARBONIZATION Sustainable Materials
在线阅读 下载PDF
Advances in Graphene‑Based Electrode for Triboelectric Nanogenerator
15
作者 Bin Xie Yuanhui Guo +7 位作者 Yun Chen Hao Zhang Jiawei Xiao Maoxiang Hou Huilong Liu Li Ma Xin Chen Chingping Wong 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期378-403,共26页
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno... With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs. 展开更多
关键词 Triboelectric nanogenerator Precision processing Graphene electrode Self-powered sensor
在线阅读 下载PDF
Regulating the mechano-electrochemistry of graphite-silicon hybrid anode through layered electrode structure design 被引量:1
16
作者 Chunhao Li Jing Wang +8 位作者 Xiancheng Wang Zihe Chen Renming Zhan Xiangrui Duan Xuerui Liu Kai Cheng Zhao Cai Li Wang Yongming Sun 《Journal of Energy Chemistry》 2025年第5期176-184,共9页
Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistr... Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistry.The dominant approach to enhance electrochemical stability of the Gr-Si hybrid anodes typically involves the optimization of the electrode material structures and the employment of low active Si species content in electrode(<10 wt%in most instances).However,the electrode structure design,a factor of equal importance in determining the electrochemical performance of Gr-Si hybrid anodes,has received scant attention.In this study,three Gr-Si hybrid anodes with the identical material composition but distinct electrode structures are designed to investigate the mechanoelectrochemistry of the electrodes.It is revealed that the substantial volume change of Si species particles in Gr-Si hybrid anodes led to the local lattice stress of Gr at their contact interface during the charge/discharge processes,thereby increasing thermodynamic and kinetic barrier of Li-ion migration.Furthermore,the huge disparity in volume change of Si species and Gr particles trigger the separate agglomeration of these two materials,resulting in a considerable electrode volume change and increased electrochemical resistance.An advanced Gr/Si hybrid anode with upper Gr and lower Si species layer structure design addresses the above challenges using photovoltaic waste silicon sources under high Si species content(17 wt%)and areal capacity(2.0 mA h cm^(-2))in Ah-level full pouch cells with a low negative/positive(N/P)ratio of 1.09.The cell shows stable cycling for 100 cycles at 0.3 C with an impressively low capacity decay rate of 0.0546%per cycle,outperforming most reported Gr-Si hybrid anodes. 展开更多
关键词 Graphite-silicon hybrid anode electrode structure Mechano-electrochemistry Local interfacial stress Cycling stability
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
17
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
Study on Affecting Factors of the Consistency of Printed Electrodes Based on an Online Pressure Monitoring System
18
作者 CAI Zi-mu GU Jin-tao +2 位作者 CHENG Guang-kai XU Guang-yi LI Yan 《印刷与数字媒体技术研究》 北大核心 2025年第2期91-97,共7页
In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu... In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance. 展开更多
关键词 Printing pressure Consistency of printed electrodes Screen printing Online monitoring
在线阅读 下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
19
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
在线阅读 下载PDF
An Efficient Thick Electrode Design with Artificial Porous Structure and Gradient Particle Arrangement for Lithium-Ion Batteries
20
作者 Zhichen Du Quanbin Zha +5 位作者 Zihan Zhang Qin Chen Hui Yang Zhouguang Lu Tianyou Zhai Huiqiao Li 《Energy & Environmental Materials》 2025年第3期130-138,共9页
Thick electrode,with its feasibility and cost-effectiveness in lithium-ion batteries(LIBs),has attracted significant attention as a promising approach maximizing the energy density of battery.Through raising the mass ... Thick electrode,with its feasibility and cost-effectiveness in lithium-ion batteries(LIBs),has attracted significant attention as a promising approach maximizing the energy density of battery.Through raising the mass loading of active materials without altering the fundamental chemical attributes,thick electrodes can boost the energy density of the batteries effectively.Nevertheless,as the thickness of the electrode increases,the ionic conductivity of the electrode decreases,leading to abominable polarization in the thickness direction,which severely hampers the practical application of a thick electrode.This work proposes a novel porous gradient design of high-performance thick electrodes for LIBs.By constructing a porous structure that serves as a fast transport pathway for lithium(Li)ions,the ion transport kinetics within thick electrodes are significantly enhanced.Meanwhile,a particle size gradient design is incorporated to further mitigate polarization effects within the electrode,leading to substantial improvements in reaction homogeneity and material utilization.Employing this strategy,we have fabricated a porous gradient nanocellulose-carbon-nanotube based thick electrode,which exhibits an impressive capacity retention of 86.7%at a high mass loading of LiCoO_(2)(LCO)active material(20 mg cm^(-2))and a high current density of 5mA cm^(-2). 展开更多
关键词 celluloses gradient electrodes lithium-ion batteries porous electrodes thick electrode technology
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部