期刊文献+
共找到96,363篇文章
< 1 2 250 >
每页显示 20 50 100
An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation 被引量:11
1
作者 Zhengcai ZHAO Jiuhua XU +1 位作者 Yucan FU Zhiqiang LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期178-186,共9页
Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with nume... Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with numerical control (NC) milling is a major solution for manufacturing titanium hollow blades. Due to the shape deviation caused by multiple heat and pressure cycles in the SPF/DB process, it is hard to manufacture the leading and tailing edges by the milling process. This paper presents a new adaptive machining approach using free-form deformation to solve this problem. The actual SPF/DB shape of a hollow blade was firstly inspected by an on-machine measurement method. The measured point data were matched to the nominal SPF/DB shape with an improved ICP algorithm afterwards, by which the point-pairs between the measurement points and their corresponding points on the nominal SPF/DB shape were established, and the maximum modification amount of the final nominal shape was constrained. Based on the displacements between the point-pairs, an accurate FFD volume was iteratively calculated. By embedding the final nominal shape in the deformation space, a new final shape of the hollow blade was built. Finally, a series of measurement and machining tests was performed, the results of which validated the feasibility of the proposed adaptive machining approach. 展开更多
关键词 Adaptive machining Blade geometry free-form deformation Reconstruction TITANIUM
原文传递
Multi-modality liver image registration based on multilevel B-splines free-form deformation and L-BFGS optimal algorithm 被引量:1
2
作者 宋红 李佳佳 +1 位作者 王树良 马婧婷 《Journal of Central South University》 SCIE EI CAS 2014年第1期287-292,共6页
A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-sp... A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration. 展开更多
关键词 multi-modal image registration affine transformation B-splines free-form deformation (FFD) L-BFGS
在线阅读 下载PDF
Real-time accurate Free-Form Deformation in terms of triangular Bézier surfaces
3
作者 CUI Yuan-min FENG Jie-qing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第4期455-467,共13页
We implemented accurate FFD in terms of triangular Bezier surfaces as matrix multiplications in CUDA and rendered them via OpenGL. Experimental results show that the proposed algorithm is more efficient than the previ... We implemented accurate FFD in terms of triangular Bezier surfaces as matrix multiplications in CUDA and rendered them via OpenGL. Experimental results show that the proposed algorithm is more efficient than the previous GPU acceleration algorithm and tessel- lation shader algorithms. 展开更多
关键词 accurate free-form deformation GPU acceleration CUDA triangular B@zier surface.
在线阅读 下载PDF
Integrated passage design based on extended free-form deformation and adjoint optimization 被引量:2
4
作者 Xin LI Tongtong MENG +2 位作者 Weiwei Li Ling ZHOU Lucheng JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期148-164,共17页
Inspired by the three-dimensional design of flow passages in turbomachinery,this study proposes the concept of integrated passage design.The capability of adjoint method for efficient optimization and the flexibility ... Inspired by the three-dimensional design of flow passages in turbomachinery,this study proposes the concept of integrated passage design.The capability of adjoint method for efficient optimization and the flexibility of the parameterization method based on extended free-form defor-mation have been considered to develop a feasible approach to design an integrated passage.This concept was applied to redesign a typical transonic fan,Rotor 67,and the results were analyzed by CFX.It is shown that the passage was adequately adjusted in all three dimensions and reduced the strength of shock wave and wake-induced flow.In particular,the secondary flow was appropriately reorganized and the corner separation was well controlled in the end wall region,leading to signif-icant improvements in adiabatic efficiency and diffusion. 展开更多
关键词 TURBOMACHINERY Aerodynamic Transonic flow Integrated passage design Extended free-form defor-mation Adjoint optimization
原文传递
3D Face Model Technology for Free-Form Deformation and Skin-Color Change 被引量:1
5
作者 Fenhua Wang Ningjuan Shi +1 位作者 Xuegang Gao Zhiliang Wang 《通讯和计算机(中英文版)》 2010年第7期10-15,共6页
关键词 三维人脸 模型技术 自由变形 皮肤颜色 颜色变化 三维扫描仪 面部特征 OPENGL
在线阅读 下载PDF
Tensile failure mode transitions from subzero to elevated deformation temperature in Mg-6Al-1Zn alloy
6
作者 Hafiz Muhammad Rehan Tariq Umer Masood Chaudry +3 位作者 Jeong-Rim Lee Nooruddin Ansari Mansoor Ali Tea-Sung Jun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期242-251,共10页
Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under... Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure. 展开更多
关键词 Mg alloy deformation temperature twinning dynamics grain refinement dynamic recovery fracture mechanics
在线阅读 下载PDF
Ultrafast Laser Shock Straining in Chiral Chain 2D Materials:Mold Topology‑Controlled Anisotropic Deformation
7
作者 Xingtao Liu Danilo de Camargo Branco +5 位作者 Licong An Mingyi Wang Haoqing Jiang Ruoxing Wang Wenzhuo Wu Gary J.Cheng 《Nano-Micro Letters》 2026年第3期274-289,共16页
Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study el... Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials. 展开更多
关键词 Tellurene Laser shock imprinting Strain engineering Anisotropic deformation Chiral chain semiconductor Dislocation dynamics
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
8
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Free-Form Deformation with Rational DMS-Spline Volumes 被引量:3
9
作者 徐岗 汪国昭 陈小雕 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第5期862-873,共12页
In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and... In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation, control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deformation. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splines. How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling. 展开更多
关键词 free-form deformation rational DMS-spline volume control lattice of arbitrary topology multiresolution deformation direct manipulation
原文传递
Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations 被引量:5
10
作者 Seyed Farhad Hosseini Ali Hashemian +1 位作者 Behnam Moetakef-Imani Saied Hadidimoud 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期728-743,共16页
In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature... In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables(displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline(NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers. 展开更多
关键词 Curved beams NONLINEAR Timoshenko beam theory Large deformation Isogeometric analysis NURBS curves
在线阅读 下载PDF
Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation 被引量:1
11
作者 Liyuan Liu Yang Zhang Zhongwu Zhang 《Journal of Materials Science & Technology》 2025年第2期27-41,共15页
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will... How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity. 展开更多
关键词 High-entropy alloy Precold deformation Precipitation behavior Ultrahigh strength deformation mechanism
原文传递
Interaction between dynamic recrystallization and phase transformation of Ti-43Al-4Nb-1Mo-0.2B alloy during hot deformation 被引量:2
12
作者 Xiaofei Chen Bin Tang +5 位作者 Beibei Wei Wenxin Xu Biao Ma Jinhua Dai Guoming Zheng Jinshan Li 《Journal of Materials Science & Technology》 2025年第11期130-142,共13页
Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-... Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase. 展开更多
关键词 TiAl alloy Hot deformation Dynamic recrystallization Phase transformation
原文传递
Electrochemical cutting with flexible electrode of controlled online deformation 被引量:1
13
作者 Lin Liu Zhengyang Xu +1 位作者 Yuheng Hao Yunlong Teng 《International Journal of Extreme Manufacturing》 2025年第1期453-480,共28页
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude... Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles. 展开更多
关键词 electrochemical machining online deformation flexible electrode
在线阅读 下载PDF
Microscopic analysis of deformation and water-salt transport in chlorine saline soils under unidirectional freezing in cold and arid zones 被引量:1
14
作者 Chenxi Dong Xin Chen +4 位作者 Yanhu Mu Zhao Duan Qiang Xue Chuanbo Sun Jiangshan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2445-2460,共16页
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f... Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering. 展开更多
关键词 Chlorine saline soils MICROSTRUCTURE Unidirectional freezing Water-salt transport deformation
在线阅读 下载PDF
Deformation Monitoring of the Embankments Using Multitemporal InSAR:a Case Study of the Kangshan Embankment 被引量:1
15
作者 XIONG Jiacheng HE Xiufeng +2 位作者 Alfred STEIN YU Juanjuan CHANG Ling 《Journal of Geodesy and Geoinformation Science》 2025年第1期12-29,共18页
River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of... River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of the embankments and efficiently recognize such potential damages,this study takes SAR(Synthetic Aperture Radar)derived deformation as an indicator of the embankment instability,and customizes a multi-temporal InSAR(Interferometric SAR)approach-small baseline subset.Specifically,during InSAR processing,we apply a two-step amplitude difference dispersion threshold method to extract InSAR measurement points,thus improving the point density within the embankment.We applied this method to the Kangshan Embankment(KE)using 147 Sentinel-1 acquired between 2017 and 2021.We categorized KE into Waterside Slope(WS),Embankment Top(ET),and Landside Slope(LS)using InSAR height estimation.Given the dominance of downslope movement,we developed a projection matrix from InSAR-derived deformation in the satellite line-of-sight direction onto WS and LS.The study shows that KE was generally stable during the five-year period,while WS,ET,and LS experienced different deformation processes.For instance,seasonal variation was observed from the deformation time series,especially between every April and November.We applied the principal component analysis to the time-series displacement and analyzed the results in conjunction with the rainfall data of Kangshan Township.It showed that deformation due to rainfall equals 80.93%,81.30%,and 82.46%of the total deformation for WS,ET,and LS,respectively,indicating that rainfall is one of the environmental driving factors affecting the deformations.We conclude that the proposed methodology is suited for systematic embankment monitoring and identifies major driving forces. 展开更多
关键词 EMBANKMENT amplitude difference dispersion slope deformation INSAR Sentinel-1
在线阅读 下载PDF
Making titanium alloys ultrahigh strength and toughness synergy through deformation kinks-me diate d hierarchical α-precipitation 被引量:1
16
作者 Keer Li Wei Chen +2 位作者 Jinyu Zhang Shewei Xin Jun Sun 《Journal of Materials Science & Technology》 2025年第4期142-159,共18页
Titanium alloys engineered in structural applications achieve ultrahigh strength primarily through precipitation strengthening of secondary α-phase(αs)during aging,while they often experience compromised ductility a... Titanium alloys engineered in structural applications achieve ultrahigh strength primarily through precipitation strengthening of secondary α-phase(αs)during aging,while they often experience compromised ductility and toughness due to traditional strength-toughness tradeoff.In this study,we propose a novel strategy to address this conflict by introducing deformation kinks prior to conventional cold rolling(CR)and aging processes.These kinks are produced by cold forging(CF)to create macroscopic lamellar structures in β-grains,which alter strain partitioning during subsequent CR and ultimately tailor α_(s)-precipitation upon aging.As a result,an ultrafine duplex(αe+β)-structure is formed within kink interi-ors,while hierarchicalαs-precipitates are generated in the external β-matrix.This unique microstructure effectively enhances dislocation activity,promotes uniform plastic strain distribution and impedes crack propagation.Consequently,a simple Ti-V binary titanium alloy exhibits exceptional properties with ultra-high strength∼1636 MPa,decent ductility∼5.4% and appreciable fracture toughness∼36.1 MPa m^(1/2).The synergetic properties surpass those obtained through traditional CR and aging processes for the alloy and even outperform numerous multielement engineering titanium alloys reported in literature.Our findings open up a new avenue for overcoming the strength-toughness tradeoffof ultrahigh-strength titanium alloys,and also offer a facile production route towards structural materials for advanced performance. 展开更多
关键词 Titanium alloys Strength-toughness synergy KINK PRECIPITATION deformation and damage
原文传递
Deformation mechanism and treatment technology research of coal pillars in acute inclined goafs under expressway 被引量:1
17
作者 Bao Wei-Xing Ma Zhi-Wei +1 位作者 Lai Hong-Peng Chen Rui 《Applied Geophysics》 2025年第1期161-175,235,共16页
When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highwa... When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects. 展开更多
关键词 model test acute inclined goafs SUBGRADE deformation mechanism treatment technology
在线阅读 下载PDF
A unique time-dependent deformation behavior of coral reef limestone 被引量:1
18
作者 Kai Wu Qingshan Meng +5 位作者 Le Luo Qinglong Qin Chi Wang Xinzhi Wang Tianli Shen Haozhen Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1862-1875,共14页
Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological s... Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime. 展开更多
关键词 Coral reef limestone Time-dependent deformation Creep mechanism Constitutive model
在线阅读 下载PDF
A theoretical and experimental study of deformation mechanism dictated by disclination-dislocation coupling in Mg alloys at different temperatures 被引量:1
19
作者 Chunfeng Du Yipeng Gao +5 位作者 Yizhen Li Quan Li Min Zha Cheng Wang Hailong Jia Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第5期176-188,共13页
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna... Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials. 展开更多
关键词 Magnesium alloys Dislocations Grain boundaries Plastic deformation Grain rotation Disclination-dislocation coupling
原文传递
Deformation analysis of ground and existing tunnel induced by overlapped curved shield tunneling 被引量:1
20
作者 Yingnan Liu Huayang Lei +2 位作者 Liang Shi Gang Zheng Mengting Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期795-809,共15页
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield... The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction. 展开更多
关键词 Overlapped curved shield tunneling Analytical solution Ground deformation Existing tunnel Overcutting mode
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部