In this paper a submerged horseshoe vortex under a free surface is discussed and the algebraic expression of the wave elevation is obtained. From this expression, some characteristics of the ship wave are described. T...In this paper a submerged horseshoe vortex under a free surface is discussed and the algebraic expression of the wave elevation is obtained. From this expression, some characteristics of the ship wave are described. There exists a smooth region nearθ=0°, but when the uniform stream passes the other singularities (source, sink, doublet, etc.) there is no smooth region. The mechanism of synthetic aperture radar (SAR) images of the narrow ship wakes is also explained.展开更多
Applications of a novel curve-fitting technique are presented to efficiently predict the motion of the vortex filament, which is trailed from a rigid body such as wings and rotors. The gov- erning equations of the mot...Applications of a novel curve-fitting technique are presented to efficiently predict the motion of the vortex filament, which is trailed from a rigid body such as wings and rotors. The gov- erning equations of the motion, when a Lagrangian approach with the present curve-fitting method is applied, can be transformed into an easily solvable form of the system of nonlinear ordinary dif- ferential equations. The applicability of Bezier curves, B-spline, and Lagrange interpolating polyno- mials is investigated. Local Lagrange interpolating polynomials with a shift operator are proposed as the best selection for applications, since it provides superior system characteristics with minimum computing time, compared to other methods. In addition, the Gauss quadrature formula with local refinement strategy has been developed for an accurate prediction of the induced velocity computed with the line integration of the Biot-Savart law. Rotary-wing problems including a vortex ring problem are analyzed to show the efficiency, accuracy, and flexibility in the applications of the pro- posed method.展开更多
Rotor wake analysis,a fundamental research of helicopter technology,has been widely applied for rotor aerodynamic analysis. This paper summarizes the research of different rotor wake models at home and abroad and revi...Rotor wake analysis,a fundamental research of helicopter technology,has been widely applied for rotor aerodynamic analysis. This paper summarizes the research of different rotor wake models at home and abroad and reviews the development process of rotor wake methods as well as the research achievement obtained in each stage.Then,the new progress of helicopter rotor wake methods is described in detail. It includes constant circulation contours modeling method of rotor wake,pseudo-implicit relaxation iteration and time-accurate solution method,research on aerodynamic interaction characteristics of helicopter rotor/fuselage by wake method,research on the rotor blade-vortex interaction noise and interaction of coaxial rigid rotor aerodynamics by viscous vortex particle method,and application of free wake method to helicopter flight dynamics modeling. In the end,some prospects for the research of helicopter rotor wake method are put forward,which clarifies the ideas for the future development of rotor wake method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10372025) and the National Key Basic Research Special Foundation of China (Grant No 2001CB309400).
文摘In this paper a submerged horseshoe vortex under a free surface is discussed and the algebraic expression of the wave elevation is obtained. From this expression, some characteristics of the ship wave are described. There exists a smooth region nearθ=0°, but when the uniform stream passes the other singularities (source, sink, doublet, etc.) there is no smooth region. The mechanism of synthetic aperture radar (SAR) images of the narrow ship wakes is also explained.
基金supported by the EDISON Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(No.2011-0020560)
文摘Applications of a novel curve-fitting technique are presented to efficiently predict the motion of the vortex filament, which is trailed from a rigid body such as wings and rotors. The gov- erning equations of the motion, when a Lagrangian approach with the present curve-fitting method is applied, can be transformed into an easily solvable form of the system of nonlinear ordinary dif- ferential equations. The applicability of Bezier curves, B-spline, and Lagrange interpolating polyno- mials is investigated. Local Lagrange interpolating polynomials with a shift operator are proposed as the best selection for applications, since it provides superior system characteristics with minimum computing time, compared to other methods. In addition, the Gauss quadrature formula with local refinement strategy has been developed for an accurate prediction of the induced velocity computed with the line integration of the Biot-Savart law. Rotary-wing problems including a vortex ring problem are analyzed to show the efficiency, accuracy, and flexibility in the applications of the pro- posed method.
文摘Rotor wake analysis,a fundamental research of helicopter technology,has been widely applied for rotor aerodynamic analysis. This paper summarizes the research of different rotor wake models at home and abroad and reviews the development process of rotor wake methods as well as the research achievement obtained in each stage.Then,the new progress of helicopter rotor wake methods is described in detail. It includes constant circulation contours modeling method of rotor wake,pseudo-implicit relaxation iteration and time-accurate solution method,research on aerodynamic interaction characteristics of helicopter rotor/fuselage by wake method,research on the rotor blade-vortex interaction noise and interaction of coaxial rigid rotor aerodynamics by viscous vortex particle method,and application of free wake method to helicopter flight dynamics modeling. In the end,some prospects for the research of helicopter rotor wake method are put forward,which clarifies the ideas for the future development of rotor wake method.