The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface te...The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.展开更多
<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber re...<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10<sup>?9</sup> and a dynamic locking accuracy of about 5 × 10<sup>?8</sup> are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on. </div>展开更多
We report the first demonstration of high-efficiency ultraviolet(UV)pulse generation in a resonance-free anti-resonant hollow-core fiber(AR-HCF).Using the wet-etching technique,we successfully reduced the cladding-tub...We report the first demonstration of high-efficiency ultraviolet(UV)pulse generation in a resonance-free anti-resonant hollow-core fiber(AR-HCF).Using the wet-etching technique,we successfully reduced the cladding-tube wall thickness of the AR-HCF to 115 nm,thereby eliminating all cladding-induced structural resonances between the near-infrared pump and the deep UV wavelengths.This structural modification fundamentally suppresses competing conversion to other phase-matching points induced by structural resonances and mitigates the pump spectral broadening limitation,achieving a UV conversion efficiency as high as 12%—twice that of previous demonstrations in gas-filled AR-HCFs.This UV conversion efficiency is comparable to that of meter-scale gas-filled capillaries that require pump pulse energy of hundreds of microjoules while also maintaining the AR-HCF's inherent advantages of centimeter-scale compactness and low pump energy at the few microjoule level.展开更多
In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultr...In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength.展开更多
Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is sim...Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is simulated numerically. The negative pressure effect is much bigger at the top of low-fiber hollow spindle than that in Murata No.861,which is more conducive for single fiber to get into the channel of hollow spindle. The tangential velocity in 0-3 mm at the top of hollow spindle increases and the fluctuation of radial velocity is much stronger,which enhance the wrapping effect. In the addition,the distribution of axial velocity remains the same.展开更多
Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the ...Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the structural changesoccurring in the Nistari silk fibers and determine the glass transition temperature as 170℃. Activation energies weremeasured separately for the crystalline and amorphous regions indicating the versatility of the technique. These values areclose to the N--H bond dissociation energy, suggesting N--H bond dissociation as the most probable process occurringduring thermal treatment As an extension of the positron results, the molecular weight of the Nistari silk fibers wasdetermined to be 10.7×10~5 based on free volume, which lies within the range suggested for the silk fibers. There seems to bean indication that cross-linking changes the spiral structure of cotton fibers to network type. However, this needs to be validated by other techniques.展开更多
基金the National Natural Science Foundation of China(No.31101085)the Scientific Research and Development Foundation for Start-up Projects of Zhejiang Agriculture and Forestry University (No.2034020044)
文摘The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.
文摘<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10<sup>?9</sup> and a dynamic locking accuracy of about 5 × 10<sup>?8</sup> are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on. </div>
基金Agency for Science,Technology and Research(M22K2c0089)。
文摘We report the first demonstration of high-efficiency ultraviolet(UV)pulse generation in a resonance-free anti-resonant hollow-core fiber(AR-HCF).Using the wet-etching technique,we successfully reduced the cladding-tube wall thickness of the AR-HCF to 115 nm,thereby eliminating all cladding-induced structural resonances between the near-infrared pump and the deep UV wavelengths.This structural modification fundamentally suppresses competing conversion to other phase-matching points induced by structural resonances and mitigates the pump spectral broadening limitation,achieving a UV conversion efficiency as high as 12%—twice that of previous demonstrations in gas-filled AR-HCFs.This UV conversion efficiency is comparable to that of meter-scale gas-filled capillaries that require pump pulse energy of hundreds of microjoules while also maintaining the AR-HCF's inherent advantages of centimeter-scale compactness and low pump energy at the few microjoule level.
基金financial supports from the National Key R&D Program of China (2016YFB0601301 and 2018YFB0605904)The National Natural Science Foundation of China (51672256)Henan Science and Technology Research Program (162102210343)
文摘In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength.
基金Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT1220)Shanghai Natural Science Foundation,China(No.13ZR1400900)Keygrant Project of Chinese Ministry of Education(No.113027A)
文摘Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is simulated numerically. The negative pressure effect is much bigger at the top of low-fiber hollow spindle than that in Murata No.861,which is more conducive for single fiber to get into the channel of hollow spindle. The tangential velocity in 0-3 mm at the top of hollow spindle increases and the fluctuation of radial velocity is much stronger,which enhance the wrapping effect. In the addition,the distribution of axial velocity remains the same.
文摘Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the structural changesoccurring in the Nistari silk fibers and determine the glass transition temperature as 170℃. Activation energies weremeasured separately for the crystalline and amorphous regions indicating the versatility of the technique. These values areclose to the N--H bond dissociation energy, suggesting N--H bond dissociation as the most probable process occurringduring thermal treatment As an extension of the positron results, the molecular weight of the Nistari silk fibers wasdetermined to be 10.7×10~5 based on free volume, which lies within the range suggested for the silk fibers. There seems to bean indication that cross-linking changes the spiral structure of cotton fibers to network type. However, this needs to be validated by other techniques.