期刊文献+
共找到282,754篇文章
< 1 2 250 >
每页显示 20 50 100
Distributed Momentum-Based Frank-Wolfe Algorithm for Stochastic Optimization 被引量:2
1
作者 Jie Hou Xianlin Zeng +2 位作者 Gang Wang Jian Sun Jie Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期685-699,共15页
This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network... This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network.Stochastic optimization problems are usually tackled by variants of projected stochastic gradient descent.However,projecting a point onto a feasible set is often expensive.The Frank-Wolfe(FW)method has well-documented merits in handling convex constraints,but existing stochastic FW algorithms are basically developed for centralized settings.In this context,the present work puts forth a distributed stochastic Frank-Wolfe solver,by judiciously combining Nesterov's momentum and gradient tracking techniques for stochastic convex and nonconvex optimization over networks.It is shown that the convergence rate of the proposed algorithm is O(k^(-1/2))for convex optimization,and O(1/log_(2)(k))for nonconvex optimization.The efficacy of the algorithm is demonstrated by numerical simulations against a number of competing alternatives. 展开更多
关键词 Distributed optimization frank-wolfe(FW)algorithms momentum-based method stochastic optimization
在线阅读 下载PDF
A MODIFIED FRANK-WOLFE ALGORITHM AND ITS CONVERGENCE PROPERTIES
2
作者 吴方 吴士泉 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1995年第3期285-291,共7页
This paper modifies the Frank-Wolfe's algorithm. Under weaker conditions it proves that the modified algorithm is convergent, and specially under the assumption of convexity of the objective function that without... This paper modifies the Frank-Wolfe's algorithm. Under weaker conditions it proves that the modified algorithm is convergent, and specially under the assumption of convexity of the objective function that without assuming {x ̄k} is bounded. 展开更多
关键词 Nonlinear programming frank-wolfe algorithm convergence properties
原文传递
聚合博弈的差分隐私分布式算法:一种Frank-Wolfe方法
3
作者 杨通清 莫立坡 +1 位作者 龙飞 符义昊 《控制与决策》 北大核心 2025年第5期1677-1686,共10页
考虑聚合博弈的隐私保护分布式纳什均衡寻求算法设计.特别地,考虑该博弈不存在中心节点,在这种情况下,每个玩家无法直接获得用于策略更新所需的聚合策略信息,采用动态跟踪一致性协议对其进行估计,其中玩家用于估计聚合策略的状态量被认... 考虑聚合博弈的隐私保护分布式纳什均衡寻求算法设计.特别地,考虑该博弈不存在中心节点,在这种情况下,每个玩家无法直接获得用于策略更新所需的聚合策略信息,采用动态跟踪一致性协议对其进行估计,其中玩家用于估计聚合策略的状态量被认为是需要保护的敏感信息.为了保护玩家的隐私,利用相互独立的高斯噪声对玩家的梯度信息进行干扰.通过将Frank-Wolfe方法与动态跟踪一致性协议相结合,设计时变通信拓扑下带约束聚合博弈的分布式纳什均衡寻求算法.进而,分析算法实现-差分隐私的方差界.此外,通过对聚合项估计误差的收敛性分析得到算法收敛的充分条件,给出算法的收敛性证明.最后,通过数值仿真验证了所提出算法的有效性和收敛速度更快的优越性.(ε,δ) 展开更多
关键词 分布式博弈 差分隐私 聚合博弈 寻找纳什均衡 隐私保护 frank-wolfe方法
原文传递
城市路网交通流量分配及拥堵收费研究——基于Frank-Wolfe算法
4
作者 李依铭 《管理学家》 2025年第17期19-21,共3页
随着城市化进程加快,交通拥堵问题日益突出,传统的道路扩容策略难以持续缓解拥堵,交通需求管理成为更有效的解决方案。拥堵收费作为一种重要的需求管理手段,通过经济杠杆调节出行行为,提高路网效率。基于此,文章构建了用户均衡(UE)和系... 随着城市化进程加快,交通拥堵问题日益突出,传统的道路扩容策略难以持续缓解拥堵,交通需求管理成为更有效的解决方案。拥堵收费作为一种重要的需求管理手段,通过经济杠杆调节出行行为,提高路网效率。基于此,文章构建了用户均衡(UE)和系统最优(SO)交通分配模型,采用Frank-Wolfe算法求解,通过数学建模与数值实验,验证了拥堵收费能够有效引导UE流量分配收敛至SO状态,从而降低系统总出行时间。研究结果表明,边际成本收费在引导交通系统从用户均衡向系统最优转变中具有有效性。 展开更多
关键词 拥堵收费 用户均衡 系统最优 交通分配 frank-wolfe算法
在线阅读 下载PDF
Frank-Wolfe算法求解交通分配问题:比较不同流量更新策略和线搜索技术 被引量:14
5
作者 徐猛 屈云超 高自友 《交通运输系统工程与信息》 EI CSCD 2008年第3期14-22,共9页
Frank-Wolfe(FW)算法是一类广泛应用于求解交通分配问题的算法.它具有容易编程实现,所需内存少的特点.但是该算法收敛速度较慢,不能得到路径信息.为了提高算法的效率,本文研究三种流量更新策略(all-at-once,one-origin-at-a-time,one-OD... Frank-Wolfe(FW)算法是一类广泛应用于求解交通分配问题的算法.它具有容易编程实现,所需内存少的特点.但是该算法收敛速度较慢,不能得到路径信息.为了提高算法的效率,本文研究三种流量更新策略(all-at-once,one-origin-at-a-time,one-OD-at-a-time)以及不同的步长搜索策略下的FW算法,其中步长搜索策略包括精确线性搜索方法(包括二分法、黄金分割法、成功失败法)和不精确的线性搜索方法(包括基于Wolfe-Powell收敛准则的搜索方法和Gao等提出的非单调线性搜索方法).最后,本文将上述策略应用于四种不同规模的交通网络中,并给出较适合求解的组合. 展开更多
关键词 交通分配问题 frank-wolfe算法 流量更新策略 线搜索
在线阅读 下载PDF
用于求解路径交通流量的改进Frank-Wolfe算法 被引量:7
6
作者 柴获 何瑞春 +1 位作者 马昌喜 代存杰 《计算机工程与应用》 CSCD 北大核心 2018年第9期213-217,共5页
Frank-Wolfe算法是用于求解交通流量分配问题的经典算法,但该算法是基于路段(Link-Based)的交通流量分配算法,无法用于求解路径交通流量。针对此问题,提出一种用于求解路径交通量的改进Frank-Wolfe算法。通过在Frank-Wolfe原算法中增加... Frank-Wolfe算法是用于求解交通流量分配问题的经典算法,但该算法是基于路段(Link-Based)的交通流量分配算法,无法用于求解路径交通流量。针对此问题,提出一种用于求解路径交通量的改进Frank-Wolfe算法。通过在Frank-Wolfe原算法中增加求解路径交通流量的计算步骤,根据原算法中"全有全无"加载方法获得的步长,更新源-目的(OD)间所有已配流的路径的交通流量,在原算法迭代计算路段流量的同时,同步计算路径流量。通过算例表明,改进算法是一个有效的算法,在Frank-Wolfe原算法的基础上增加少量的时间和空间成本即可求解路径交通流量,避免穷举交通网络中的所有路径,可以很好地用于用户均衡交通流量分配中。 展开更多
关键词 系统工程 路径交通流量 frank-wolfe算法 交通流量分配 用户均衡
在线阅读 下载PDF
Frank-Wolfe算法在输气管道内腐蚀预测中的应用 被引量:2
7
作者 龙学渊 袁宗明 《油气储运》 CAS 北大核心 2007年第1期13-17,共5页
组合预测是对用多种预测方法进行预测的结果加权。建立了基于最小二乘法原理的组合预测模型,提出了求解此组合预测模型的一种新的算法,即Frank-Wolfe算法,并将其应用于四川某输气管道内腐蚀速度预测的研究,应用结果表明,Frank-Wolfe方... 组合预测是对用多种预测方法进行预测的结果加权。建立了基于最小二乘法原理的组合预测模型,提出了求解此组合预测模型的一种新的算法,即Frank-Wolfe算法,并将其应用于四川某输气管道内腐蚀速度预测的研究,应用结果表明,Frank-Wolfe方法较适用于求解组合预测问题的权重。 展开更多
关键词 天然气管道 内腐蚀速率 组合预测 frank-wolfe算法 应用
在线阅读 下载PDF
一类非线性二层规划的Frank-Wolfe方法 被引量:1
8
作者 张涛 吕一兵 《湖北大学学报(自然科学版)》 CAS 北大核心 2010年第4期375-378,共4页
利用下层问题的K-T最优性条件将下层为线性规划的一类非线性二层规划转化为相应的单层规划,同时取互补条件为罚项,得到该类问题的单层罚问题;然后利用Frank-Wolfe方法对单层罚问题进行求解.数值实验表明该方法是可行的.
关键词 非线性二层规划 最优解 frank-wolfe方法
在线阅读 下载PDF
基于Frank-Wolfe算法的路径交通量求解方法 被引量:9
9
作者 李峰 王书宁 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第6期632-636,共5页
针对用户均衡交通分配问题,提出一种可以避免穷举网络中的所有路径的基于Frank-W olfe算法的路径交通量求解方法。它在已知一组满足用户均衡规则的基于终点的路段交通量和交通网络中各个OD(origin destination)对间的最短路集合的前提下... 针对用户均衡交通分配问题,提出一种可以避免穷举网络中的所有路径的基于Frank-W olfe算法的路径交通量求解方法。它在已知一组满足用户均衡规则的基于终点的路段交通量和交通网络中各个OD(origin destination)对间的最短路集合的前提下,运用一个算法确定出一组满足用户均衡规则的路径交通量。文中通过算例说明该方法是有效的,并通过比较指出该方法在存储内存、计算结果以及计算速度方面优于其他基于路径算法。 展开更多
关键词 交通运输系统工程 交通分配 路段算法 路径算法 用户均衡
在线阅读 下载PDF
对Frank-Wolfe算法在图像恢复中最小二乘问题的研究 被引量:1
10
作者 张占 霍晓妹 文有为 《激光杂志》 北大核心 2015年第11期32-35,共4页
在图像恢复问题中经常需要求解一个带箱约束的最小二乘问题。传统上,该问题通常先采用最速下降法求解一个无约束的最小二乘问题,然后将解投影到箱式约束中。这样一种途径得到的解是次优的。Frank-Wolfe算法是一个经典的求解带约束问题... 在图像恢复问题中经常需要求解一个带箱约束的最小二乘问题。传统上,该问题通常先采用最速下降法求解一个无约束的最小二乘问题,然后将解投影到箱式约束中。这样一种途径得到的解是次优的。Frank-Wolfe算法是一个经典的求解带约束问题的迭代算法,其收敛速度为O(1/k)。本文采用该算法来解决图像恢复中的带箱式约束的最小二乘问题。数值结果表明,采用Frank-Wolfe算法得到的恢复图像要优于最速下降法。 展开更多
关键词 箱约束 图像恢复 最小二乘问题 frank-wolfe算法
原文传递
自适应Frank-Wolfe算法及其在矩阵填充上的应用 被引量:1
11
作者 汪丽琴 喻高航 张亮亮 《杭州电子科技大学学报(自然科学版)》 2021年第2期88-93,共6页
提出一种矩阵填充问题的自适应Frank-Wolfe算法。首先,采用Nesterov加速策略加速Frank-Wolfe算法,然后,在迭代过程中对矩阵降秩,提高标准Frank-Wolfe算法收敛速率的同时,降低了迭代成本;最后,通过数值实验验证所提算法的有效性。
关键词 frank-wolfe算法 矩阵填充 Nesterov加速 降秩
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
12
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
13
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
基于Frank-Wolfe算法的交通分配研究
14
作者 郑晏群 张鹍鹏 《价值工程》 2021年第14期193-196,共4页
为了提升交通分配算法的速度以适应现实业务需求。本文提出了一种改进Frank-Wolfe算法,该算法模型相较于传统模型,优化了道路路阻计算方法,使模型路径规划接近现实情况,并预设出行路径集,避免穷举网络所有路径。此外,本文还解决了路段... 为了提升交通分配算法的速度以适应现实业务需求。本文提出了一种改进Frank-Wolfe算法,该算法模型相较于传统模型,优化了道路路阻计算方法,使模型路径规划接近现实情况,并预设出行路径集,避免穷举网络所有路径。此外,本文还解决了路段途径车流OD无法溯源的问题。在测试实验中,本文以深圳市的交通数据为实验数据,用本文的方法进行OD溯源和交通分配,本文中的算法在运行速度上明显优于传统算法,更有利于部署在城市交通管理实际应用上。 展开更多
关键词 交通分配 frank-wolfe算法 OD溯源
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
15
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
16
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
17
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
18
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
19
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部