We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based met...We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10].展开更多
The importance of the project selection phase in any six sigma initiative cannot be emphasized enough. The successfulness of the six sigma initiative is affected by successful project selection. Recently, Data Envelop...The importance of the project selection phase in any six sigma initiative cannot be emphasized enough. The successfulness of the six sigma initiative is affected by successful project selection. Recently, Data Envelopment Analysis (DEA) has been proposed as a six sigma project selection tool. However, there exist a number of different DEA formulations which may affect the selection process and the wining project being selected. This work initially applies nine different DEA formulations to several case studies and concludes that different DEA formulations select different wining projects. Also in this work, a Multi-DEA Unified Scoring Framework is proposed to overcome this problem. This framework is applied to several case studies and proved to successfully select the six sigma project with the best performance. The framework is also successful in filtering out some of the projects that have “selective” excellent performance, i.e. projects with excellent performance in some of the DEA formulations and worse performance in others. It is also successful in selecting stable projects;these are projects that perform well in the majority of the DEA formulations, even if it has not been selected as a wining project by any of the DEA formulations.展开更多
文摘We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10].
文摘The importance of the project selection phase in any six sigma initiative cannot be emphasized enough. The successfulness of the six sigma initiative is affected by successful project selection. Recently, Data Envelopment Analysis (DEA) has been proposed as a six sigma project selection tool. However, there exist a number of different DEA formulations which may affect the selection process and the wining project being selected. This work initially applies nine different DEA formulations to several case studies and concludes that different DEA formulations select different wining projects. Also in this work, a Multi-DEA Unified Scoring Framework is proposed to overcome this problem. This framework is applied to several case studies and proved to successfully select the six sigma project with the best performance. The framework is also successful in filtering out some of the projects that have “selective” excellent performance, i.e. projects with excellent performance in some of the DEA formulations and worse performance in others. It is also successful in selecting stable projects;these are projects that perform well in the majority of the DEA formulations, even if it has not been selected as a wining project by any of the DEA formulations.