In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea...In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.展开更多
Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentiall...Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentially leading to instability in real-time hybrid simulation(RTHS).This study aims to elucidate the relationship between calculated and measured displacements by analyzing their magnitude and phase in the frequency domain via transformations.The physical implications of these relationships are explored in the context of frequency domain evaluation indices(FEI),the transfer function of actuator dynamics,and delay compensation.Formulations for achieving perfect compensation of actuator dynamics are developed,and an enhanced compensation approach,termed improved windowed frequency domain evaluation index-based compensation(IWFEI),is introduced.The efficacy of IWFEI is assessed using a RTHS benchmark model,with perturbed simulations conducted to validate its robustness.Uncertainties inherent in actuator dynamics are represented as random variables in these simulations.Comparative analysis of the mean values and variances of evaluation criteria demonstrates that IWFEI enables more accurate and robust compensation.Furthermore,strong correlations observed among criteria in the time and frequency domains underscore the effectiveness of the proposed frequency domain-based compensation method in mitigating amplitude errors and phase delays in RTHS.展开更多
Structures modelled with flexible-base assumptions,incorporating soil effects,generally exhibit longer natural periods and higher damping compared to fixed-base models that exclude soil-structure interaction(SSI).Howe...Structures modelled with flexible-base assumptions,incorporating soil effects,generally exhibit longer natural periods and higher damping compared to fixed-base models that exclude soil-structure interaction(SSI).However,the beneficial or detrimental nature of SSI remains contentious in current earthquake damage analyses and research findings.This study introduces a numerical modelling technique,validated by experimental shaking table tests,to examine the effects of SSI on high-rise buildings.The study considers various substructure parameters,including foundation types,soil types,and bedrock depths.Both advantageous and adverse impacts of SSI are identified and analysed.Numerical simulations reveal that increased subsoil stiffness significantly amplifies the base shear of structures compared to bedrock depth effects.Additionally,increased foundation rocking results in higher inter-storey drifts and reduced base shear.Overall,SSI tends to amplify inter-storey drifts,indicating detrimental effects.Specifically,the study found that the inclusion of SSI increased maximum inter-storey drifts by up to 38%,particularly in softer soils,while reducing base shear by up to 44%in structures with classical compensated foundations on D_(e)and E_(e)soil types.In contrast,piled foundation systems experienced an increase in base shear of up to 27%under the same conditions.Conversely,SSI has beneficial impacts on base shear for structures with classical compensated foundations on soil types of D_(e)and E_(e),as it reduces the base shear.For structures with piled foundations and those with classical compensated foundations on C_(e)soil,SSI effects are detrimental.C_(e),D_(e),and E_(e)soils correspond to geotechnical classifications per AS1170,representing stiff,medium,and soft soils respectively.The study also presents minimum base shear ratios considering SSI reduction effects for various foundation types.展开更多
基金National Science and Technology Support Program of China under Grant No.2011BAJ08B02Natural Science Foundation of Beijing under Grant No.8132016Beijing City University Youth Backbone Talent Training Project under Grant No.PHR201108009
文摘In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.
基金Ministry of Science and Technology of China under Grant No.2023YFC3804300National Science Foundation of China under Grant No.52178114。
文摘Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentially leading to instability in real-time hybrid simulation(RTHS).This study aims to elucidate the relationship between calculated and measured displacements by analyzing their magnitude and phase in the frequency domain via transformations.The physical implications of these relationships are explored in the context of frequency domain evaluation indices(FEI),the transfer function of actuator dynamics,and delay compensation.Formulations for achieving perfect compensation of actuator dynamics are developed,and an enhanced compensation approach,termed improved windowed frequency domain evaluation index-based compensation(IWFEI),is introduced.The efficacy of IWFEI is assessed using a RTHS benchmark model,with perturbed simulations conducted to validate its robustness.Uncertainties inherent in actuator dynamics are represented as random variables in these simulations.Comparative analysis of the mean values and variances of evaluation criteria demonstrates that IWFEI enables more accurate and robust compensation.Furthermore,strong correlations observed among criteria in the time and frequency domains underscore the effectiveness of the proposed frequency domain-based compensation method in mitigating amplitude errors and phase delays in RTHS.
文摘Structures modelled with flexible-base assumptions,incorporating soil effects,generally exhibit longer natural periods and higher damping compared to fixed-base models that exclude soil-structure interaction(SSI).However,the beneficial or detrimental nature of SSI remains contentious in current earthquake damage analyses and research findings.This study introduces a numerical modelling technique,validated by experimental shaking table tests,to examine the effects of SSI on high-rise buildings.The study considers various substructure parameters,including foundation types,soil types,and bedrock depths.Both advantageous and adverse impacts of SSI are identified and analysed.Numerical simulations reveal that increased subsoil stiffness significantly amplifies the base shear of structures compared to bedrock depth effects.Additionally,increased foundation rocking results in higher inter-storey drifts and reduced base shear.Overall,SSI tends to amplify inter-storey drifts,indicating detrimental effects.Specifically,the study found that the inclusion of SSI increased maximum inter-storey drifts by up to 38%,particularly in softer soils,while reducing base shear by up to 44%in structures with classical compensated foundations on D_(e)and E_(e)soil types.In contrast,piled foundation systems experienced an increase in base shear of up to 27%under the same conditions.Conversely,SSI has beneficial impacts on base shear for structures with classical compensated foundations on soil types of D_(e)and E_(e),as it reduces the base shear.For structures with piled foundations and those with classical compensated foundations on C_(e)soil,SSI effects are detrimental.C_(e),D_(e),and E_(e)soils correspond to geotechnical classifications per AS1170,representing stiff,medium,and soft soils respectively.The study also presents minimum base shear ratios considering SSI reduction effects for various foundation types.