This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%...This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.展开更多
This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of ma...This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.展开更多
Low energy neutron induced fission of 235U is studied in the framework of the multi-modal fission model. The fission fragment properties, such as the yields, the average total kinetic energy distribution and the avera...Low energy neutron induced fission of 235U is studied in the framework of the multi-modal fission model. The fission fragment properties, such as the yields, the average total kinetic energy distribution and the average neutron separation energy, are investigated for incident neutron energies from thermal to 6.0 MeV. The multi-modal fission approach is also used to evaluate the prompt fission neutron multiplicity and spectra for the neutron-induced fission of 235U with an improved version of the Los Alamos model for incident neutrons below the (n, nf) threshold. The three most dominant fission modes are taken into account. The model parameters are determined on the basis of experimental data. The calculated results are in good agreement with the experimental data.展开更多
基金financially supported by the European Union for the project Marie Curie TOK-DEV MTKD-CT-2006-042468
文摘This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.
基金The School of Mining Engineering,University of the Witwatersrand South Africa is acknowledged for providing support towards the success of this researchSpecifically the Centennial Trust Fund for Rock Engineering is appreciated for funding part of this research
文摘This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.
基金Supported by Research Fund for Doctoral Program of Higher Education of China (200610001023)Major State Basic Research Development Program of China (2007CB209903, 2008CB717803)National Fund for Fostering Talents of Basic Science of China(J0630311)
文摘Low energy neutron induced fission of 235U is studied in the framework of the multi-modal fission model. The fission fragment properties, such as the yields, the average total kinetic energy distribution and the average neutron separation energy, are investigated for incident neutron energies from thermal to 6.0 MeV. The multi-modal fission approach is also used to evaluate the prompt fission neutron multiplicity and spectra for the neutron-induced fission of 235U with an improved version of the Los Alamos model for incident neutrons below the (n, nf) threshold. The three most dominant fission modes are taken into account. The model parameters are determined on the basis of experimental data. The calculated results are in good agreement with the experimental data.