期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Performance Analysis of Foamed Fracturing Fluids Based on Microbial Polysaccharides and Surfactants in High-Temperature and High-Salinity Reservoirs
1
作者 Zhiqiang Jiang Zili Li +5 位作者 Bin Liang Miao He Weishou Hu Jun Tang Chao Song Nanxin Zheng 《Fluid Dynamics & Materials Processing》 2025年第6期1397-1416,共20页
Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides an... Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood.In this study,we innovatively investigate this problem with a particular focus on foam stabilization mechanisms.By employing the Waring blender method,the optimal surfactant-microbial polysaccharide blends are identified,and the foam stability,rheological properties,and decay behavior in different systems under varying conditions are systematically analyzed for the first time.The results reveal that microbial polysaccharides significantly enhance foam stability by improving the viscoelasticity of the liquid films,particularly under high-salinity and high-temperature conditions,leading to notable improvements in both foam stability and sand-carrying capacity.Additionally,scanning electron microscopy(SEM)is used to observe the microstructure of the foam liquid films,demonstrating that the network structure formed by the foam stabilizer within the liquid film effectively inhibits foam coarsening.The Lauryl betaine and Diutan gum blend exhibits outstanding foam stability,superior sand-carrying capacity,and minimal core damage,making(LAB+MPS04)it ideal for applications in enhanced production and reservoir stimulation of unconventional reservoirs. 展开更多
关键词 Foam fracturing fluid microbial polysaccharides synergistic effect stabilization mechanism PERFORMANCE
在线阅读 下载PDF
Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids 被引量:21
2
作者 Hong-Kui Ge Liu Yang +4 位作者 Ying-Hao Shen Kai Ren Fan-Bao Meng Wen-Ming Ji Shan Wu 《Petroleum Science》 SCIE CAS CSCD 2015年第4期636-650,共15页
Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix... Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity. 展开更多
关键词 Imbibition . Shale fracturing fluid Capillary pressure CLAY
原文传递
Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids:A case study of the Linxing area,Ordos Basin 被引量:3
3
作者 Qihui Li Dazhong Ren +6 位作者 Hu Wang Haipeng Sun Tian Li Hanpeng Zhang Zhen Yan Rongjun Zhang Le Qu 《Energy Geoscience》 EI 2024年第3期328-338,共11页
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ... The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones. 展开更多
关键词 Tight sandstone Ordos Basin fracturing fluid Microscopic reservoir characteristics Imbibition efficiency Influencing factor
在线阅读 下载PDF
Experimental study of reservoir damage of water-based fracturing fluids prepared by different polymers
4
作者 Guo-Dong Wu Li-Kun Wang +8 位作者 Chun-Yan Zhao Ze-Jun Zhang Jian-Yu Yin Maryamgul Anwaier Hong-Da Ren Dan Yang Shu-Li Yin Zhuo-Lin Cai Dao-Yi Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3298-3306,共9页
Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fractur... Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fracturing fluids(such as guar gum(GG), polyacrylamide(HPAM), etc.) are high-viscosity fluids formed by viscosifiers and crosslinking agents, the degree of gel breakage after the fracturing operation directly influences the damage degree to the reservoir matrix and the mobility of oil angd gas produced from the reservoir into the wellbore. This study compared the viscosity, molecular weight, and particle size of the fracturing fluid after gel breakage prepared by GG and HPAM as viscosifiers, as well as evaluate their damage to the core. Results show that the viscosities of the gel-breaking fluid increased with the concentration of the viscosifier for both the HPAM-based and GG-based fracturing fluids. For the breaking fluid with the same viscosity, the molecular weight in the HPAM-based gel-breaking fluid was much larger than that in the GG-based system. Moreover, for the gel-breaking fluid with the same viscosity, the molecular particle size of the residual polymers in the HPAM-based system was smaller than that in the GG-based system. The damage to the core with the permeability of 1 × 10^(-3)μm^(2) caused by both the HPAM-based and GG-based gel-breaking fluids decreased with the increase in the solution viscosity. For the gel-breaking fluid systems with the same viscosity(i.e., 2-4 mPa s), the damage of HPAM-based fracturing fluid to low-permeability cores was greater than the GG-based fracturing fluid(45.6%-80.2%) since it had a smaller molecular particle size, ranging from 66.2% to 77.0%. This paper proposed that the damage caused by hydraulic fracturing in rock cores was related to the partilce size of residual polymers in gel-breaking solution, rather than its molecular weight. It was helpful for screening and optimizing viscosifiers used in hydraulic fracturing process. 展开更多
关键词 fracturing fluid Guar gum HPAM Gel-breaking fluid Formation damage
原文传递
Reasons for the low flowback rates of fracturing fluids in marine shale
5
作者 Lu Yongjun Wang Haiyan +4 位作者 Guan Baoshan Liu Ping Guo Limei Wu Jiaquan Yi Xinbin 《Natural Gas Industry B》 2018年第1期35-40,共6页
In this paper,marine shale cores taken from Zhaotong,Changning and Weiyuan Blocks in South China were used as samples to investigate the interaction between fracturing fluids and shale and the retention mechanisms.Fir... In this paper,marine shale cores taken from Zhaotong,Changning and Weiyuan Blocks in South China were used as samples to investigate the interaction between fracturing fluids and shale and the retention mechanisms.Firstly,adsorption,swelling,dissolution pore,dissolution fluid mineralization degree and ionic composition were experimentally studied to reveal the occurrence of water in shale and the reason for a high mineralization degree.Then,the mechanisms of water retention and mineralization degree increase were simulated and calculated.The scanning electron microscopy(SEM)analysis shows that there are a large number of micro fractures originated from clay minerals in the shale.Mineral dissolution rates of shale immersed in ultrasonic is around 0.5-0.7%.The ionic composition is in accordance with that of formation water.The clay minerals in core samples are mainly composed of chlorites and illites with a small amount of illites/smectites,but no montmorillonites(SS),and its content is between 18%and 20%.It is verified by XRD and infrared spectroscopy that the fracturing fluid doesn't flow into the space between clay mineral layers,so it can't lead to shale swelling.Thus,the retention of fracturing fluids is mainly caused by the adsorption at the surface of the newly fractured micro fractures in shale in a mode of successive permeation,and its adsorptive saturation rates is proportional to the pore diameters.It is concluded that the step-by-step extraction of fracturing fluids to shale and the repulsion of nano-cracks to ion are the main reasons for the abrupt increase of mineralization degree in the late stage of flowing back.In addition,the liquid carrying effect of methane during the formation of a gas reservoir is also a possible reason.Based on the experimental and field data,fracturing fluid flowback rates and gas production rates of 9 wells were analyzed.It is indicated that the same block follows an overall trend,namely,the lower the flowback rates,the more developed the micro fractures,the better the volume simulation effect and the higher the gas production rates. 展开更多
关键词 SHALE fracturing fluid Core Adsorption Flowback rate Mineralization degree ORIGIN Marine shale in south China Gas production rate
在线阅读 下载PDF
A review of crosslinked fracturing fluids prepared with produced water 被引量:6
6
作者 Leiming Li Ghaithan A.Al-Muntasheri Feng Liang 《Petroleum》 2016年第4期313-323,共11页
The rapidly increasing implementations of oilfield technologies such as horizontal wells and multistage hydraulic fracturing,particularly in unconventional formations,have expanded the need for fresh water in many oil... The rapidly increasing implementations of oilfield technologies such as horizontal wells and multistage hydraulic fracturing,particularly in unconventional formations,have expanded the need for fresh water in many oilfield locations.In the meantime,it is costly for services companies and operators to properly dispose large volumes of produced water,generated annually at about 21 billion barrels in the United States alone.The high operating costs in obtaining fresh water and dealing with produced water have motivated scientists and engineers,especially in recent years,to use produced water in place of fresh water to formulate well treatment fluids.The objective of this brief review is to provide a summary of the up-to-date technologies of reusing oilfield produced water in preparations of a series of crosslinked fluids implemented mainly in hydraulic fracturing operations.The crosslinked fluids formulated with produced water include borate-and metalcrosslinked guar and derivatized guar fluids,as well as other types of crosslinked fluid systems such as crosslinked synthetic polymer fluids and crosslinked derivatized cellulose fluids.The boratecrosslinked guar fluids have been successfully formulated with produced water and used in oilfield operations with bottomhole temperatures up to about 250F.The produced water sources involved showed total dissolved solids(TDS)up to about 115,000 mg/L and hardness up to about 11,000 mg/L.The metal-crosslinked guar fluids prepared with produced water were successfully used in wells at bottomhole temperatures up to about 250F,with produced water TDS up to about 300,000 mg/L and hardness up to about 44,000 mg/L.The Zr-crosslinked carboxymethyl hydroxypropyl guar(CMHPG)fluids have been successfully made with produced water and implemented in operations with bottomhole temperatures at about 250tF,with produced water TDS up to about 280,000 mg/L and hardness up to about 91,000 mg/L.In most of the cases investigated,the produced water involved was either untreated,or the treatments were minimum such as simple filtration without significantly changing the concentrations of monovalent and divalent ions in the water.Due to the compositional similarity(high salinity and hardness)between produced water and seawater,crosslinked fluids formulated with seawater for offshore and onshore jobs were also included.The crosslinked guar and derivatized guar fluids have been successfully formulated with seawater for operations at bottomhole temperatures up to about 300F.Operating costs have been significantly reduced when produced water or seawater is used to formulate fracturing fluids in place of fresh water.With various challenges and limitations still existing,the paper emphasizes the needs for new developments and further expansion of produced water reuse in oilfield operations. 展开更多
关键词 Produced water Produced water reuse Seawater fracturing fluid Crosslinked fluid Borate crosslinker Metal crosslinker GUAR Derivatized guar
原文传递
Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin
7
作者 Zhao-xian Zheng Xiao-shun Cui +1 位作者 Pu-cheng Zhu Si-jia Guo 《Journal of Groundwater Science and Engineering》 2021年第2期93-101,共9页
Hydrogeochemical processes that would occur in polluted groundwater and aquifer system,may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF)in groundwater.In this p... Hydrogeochemical processes that would occur in polluted groundwater and aquifer system,may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF)in groundwater.In this paper,the Dameigou shale gas field in the northern Qaidam Basin was taken as the study area,where the hydrogeochemical processes affecting Sr isotope was analysed.Then,the model for Sr isotope in HFFF-polluted groundwater was constructed to assess the sensitivity of Sr isotope as HFFF indicator.The results show that the dissolution can release little Sr to polluted groundwater and cannot affect the εSr(the deviation of the 87Sr/86Sr ratio)of polluted groundwater.In the meantime,cation exchange can considerably affect Sr composition in the polluted groundwater.The Sr with low εSr is constantly released to groundwater from the solid phase of aquifer media by cation exchange with pollution of Quaternary groundwater by the HFFF and it accounts for 4.6% and 11.0% of Sr in polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater,respectively.However,the Sr from cation exchange has limited impact on Sr isotope in polluted groundwater.Addition of Sr from cation exchange would only cause a 0.2%and 1.2% decrease in εSr of the polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater,respectively.These results demonstrate that hydrogeochemical processes have little effect on the sensitivity of Sr isotope being the HFFF indicator in groundwater of the study area.For the scenario of groundwater pollution by HFFF,when the HFFF accounts for 5%(in volume percentage)of the polluted groundwater,the HFFF can result in detectable shifts of εSr(Δ_(εSr)=0.86)in natural groundwater.Therefore,after consideration of hydrogeochemical processes occurred in aquifer with input of the HFFF,Sr isotope is still a sensitive indicator of the Quaternary groundwater pollution by the HFFF produced in the Dameigou shale of Qaidam Basin. 展开更多
关键词 Dameigou shale gas Groundwater pollution Hydraulic fracturing flowback fluids Strontium isotope Hydrogeochemical modelling
在线阅读 下载PDF
Recovery and treatment of fracturing flowback fluids in the Sulige Gasfield,Ordos Basin
8
作者 He Mingfang Lai Xuan'ang +5 位作者 Li Ningjun Xiao Yuanxiang Shen Lei Liu Xiaorui Ma Zhanguo Wang Yajuan 《Natural Gas Industry B》 2015年第5期467-472,共6页
Centralized and group well deployment and factory-like fracturing techniques are adopted for low-permeability tight sandstone reservoirs in the Sulige Gasfield,Ordos Basin,so as to realize its efficient and economic d... Centralized and group well deployment and factory-like fracturing techniques are adopted for low-permeability tight sandstone reservoirs in the Sulige Gasfield,Ordos Basin,so as to realize its efficient and economic development.However,environmental protection is faced with grim situations because fluid delivery rises abruptly on site in a short time due to centralized fracturing of the well group.Based on the characteristics of gas testing after fracturing in this gas field,a fracturing flowback fluid recovery and treatment method suitable for the Sulige Gasfield has been developed with the landform features of this area taken into account.Firstly,a high-efficiency well-to-well fracturing flowback fluid recovery and reutilization technique was developed with multi-effect surfactant polymer recoverable fracturing fluid system as the core,and in virtue of this technique,the treatment efficiency of conventional guar gum fracturing fluid system is increased.Secondly,for recovering and treating the end fluids on the well sites,a fine fracturing flowback fluid recovery and treatment technique has been worked out with“coagulation and precipitation,filtration and disinfection,and sludge dewatering”as the main part.Owing to the application of this method,the on-site water resource utilization ratio has been increased and environmental protection pressure concerned with fracturing operation has been relieved.In 2014,field tests were performed in 62 wells of 10 well groups,with 32980 m3 cumulative treated flowback fluid,17160 m3 reutilization volume and reutilization ratio over 70%.Obviously,remarkable social and economical benefits are thus realized. 展开更多
关键词 Ordos Basin Sulige Gasfield Environmental protection Multiwell cluster Flowback fluid Well-to-well reutilization Recoverable fracturing fluid Water standard Treatment process End fluid treatment
在线阅读 下载PDF
Adsorption damage mechanism and control of fracturing fluid thickener in deep coal rock
9
作者 YOU Lijun QIAN Rui +1 位作者 KANG Yili WANG Yijun 《Petroleum Exploration and Development》 2025年第1期208-218,共11页
Static adsorption and dynamic damage experiments were carried out on typical 8#deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin,NW China,to evaluate the adsorption capacity of hydroxypropyl guar ... Static adsorption and dynamic damage experiments were carried out on typical 8#deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin,NW China,to evaluate the adsorption capacity of hydroxypropyl guar gum and polyacrylamide as fracturing fluid thickeners on deep coal rock surface and the permeability damage caused by adsorption.The adsorption morphology of the thickener was quantitatively characterized by atomic force microscopy,and the main controlling factors of the thickener adsorption were analyzed.Meanwhile,the adsorption mechanism of the thickener was revealed by Zeta potential,Fourier infrared spectroscopy and X-ray photoelectron spectroscopy.The results show that the adsorption capacity of hydroxypropyl guar gum on deep coal surface is 3.86 mg/g,and the permeability of coal rock after adsorption decreases by 35.24%–37.01%.The adsorption capacity of polyacrylamide is 3.29 mg/g,and the permeability of coal rock after adsorption decreases by 14.31%–21.93%.The thickness of the thickener adsorption layer is positively correlated with the mass fraction of thickener and negatively correlated with temperature,and a decrease in pH will reduce the thickness of the hydroxypropyl guar gum adsorption layer and make the distribution frequency of the thickness of polyacrylamide adsorption layer more concentrated.Functional group condensation and intermolecular force are chemical and physical forces for adsorbing fracturing fluid thickener in deep coal rock.Optimization of thickener mass fraction,chemical modification of thickener molecular,oxidative thermal degradation of polymer and addition of desorption agent can reduce the potential damages on micro-nano pores and cracks in coal rock. 展开更多
关键词 deep coal rock gas fracturing fluid THICKENER adsorption morphology adsorption mechanism control factor permeability damage damage prevention
在线阅读 下载PDF
Effect of acid fracturing fluid modifying coal microstructure stimulated by ultrasonic
10
作者 Shaojie Zuo Rui Gan +6 位作者 Zhijie Wen Liang Zhang Zhizhong Jiang Fuping Zhao Chengwei Liu Kun Li Zhiyuan Xu 《International Journal of Mining Science and Technology》 2025年第2期275-293,共19页
The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix,thereby enhancing the efficiency of the acid fracturing process.In this rese... The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix,thereby enhancing the efficiency of the acid fracturing process.In this research,acetic acid was utilized to formulate acid fracturing fluids with varying concentrations,and the evolutionary traits of both the acid fracturing fluids and ultrasonic waves in relation to coal samples were investigated.The functional group structure,mineral composition,micropore structure and surface morphology of coal samples were characterized by FTIR,XRD,N_(2)adsorption at low temperature and SEM-EDS.The results showed that aromatics(I)and branching parameters(CH_(2)/CH_(3))were reduced by 81.58%and 88.67%,respectively,after 9%acetic acid treatment.Acetic acid can dissolve carbonates and clay minerals in coal,create new pores,and increase porosity,pore volume and pore fractal dimension.After modification by 7%acetic acid,the pore volume increased by 5.7 times.SEM observation shows that the diameter of coal surface holes increases,EDS scanning shows that the content of mineral elements in coal decreases,the connectivity of coal holes increases,and the holes expand.The findings of this research offer theoretical direction for optimizing ultrasonic-enhanced acid fracturing fluid modification. 展开更多
关键词 Acidic fracturing fluid ULTRASONIC Coalbed methane MICROSTRUCTURE
在线阅读 下载PDF
A Novel Low-Damage Viscoelastic-Surfactant Foam Fracturing Fluid for Tight Reservoirs: Development and Performance Assessment
11
作者 Yu Li Jie Bian +5 位作者 Liang Zhang Xuesong Feng Jiachen Hu Ji Yu Chao Zhou Tian Lan 《Fluid Dynamics & Materials Processing》 2025年第10期2539-2556,共18页
As oil and gas development increasingly targets unconventional reservoirs,the limitations of conventional hydraulic fracturing,namely high water consumption and significant reservoir damage,have become more pronounced... As oil and gas development increasingly targets unconventional reservoirs,the limitations of conventional hydraulic fracturing,namely high water consumption and significant reservoir damage,have become more pronounced.This has driven growing interest in the development of clean fracturing fluids that minimize both water usage and formation impairment.In this study,a low-liquid-content viscoelastic surfactant(VES)foam fracturing fluid system was formulated and evaluated through laboratory experiments.The optimized formulation comprises 0.2%foaming agent CTAB(cetyltrimethylammonium bromide)and 2%foam stabilizer EAPB(erucamidopropyl betaine).Laboratory tests demonstrated that the VES foam system achieved a composite foam value of 56,700 mL・s,reflecting excellent foaming performance.Proppant transport experiments revealed minimal variation in suspended sand volume over 120 min across different sand ratios,indicating robust sand-carrying capacity even at high proppant concentrations.Rheological measurements showed that the fluid maintained a viscosity above 120 mPa・s after 120 min of shearing at 70℃ and a shear rate of 170 s−1,with the elastic modulus exceeding the viscous modulus,confirming the system’s exceptional stability and resilience.Furthermore,core damage tests indicated that the VES foam caused only 4.42%formation damage,highlighting its potential for efficient and low-damage stimulation of tight reservoirs.Overall,the findings demonstrate that this low-liquid-content VES foam provides a highly effective,environmentally considerate alternative for hydraulic fracturing in unconventional formations,combining superior proppant transport,rheological stability,and minimal reservoir impairment. 展开更多
关键词 Foam fracturing fluid viscoelastic surfactant reservoir stimulation performance evaluation
在线阅读 下载PDF
Influence of Fracturing Fluid Properties on the Frictional Coefficient of Shale Rock and Hydraulic Fracture Length
12
作者 Yining Zhou Yufeng Li +5 位作者 Chen Zhang Tao Wu Jingru Zhang Bowen Yun Rui Tan Wei Yan 《Energy Engineering》 2025年第5期1823-1837,共15页
This study investigated the micro-sliding frictional behavior of shale in fracturing fluids under varying operational conditions using Chang 7 shale oil reservoir core samples.Through systematic micro-sliding friction... This study investigated the micro-sliding frictional behavior of shale in fracturing fluids under varying operational conditions using Chang 7 shale oil reservoir core samples.Through systematic micro-sliding friction experiments,the characteristics and governing mechanisms of shale friction were elucidated.Complementary analyses were conducted to characterize the mineral composition,petrophysical properties,and micromorphology of the shale samples,providing insights into the relationship between microscopic structure and frictional response.In this paper,the characteristics and variation law of shale micro-sliding friction under different types of graphite materials as additives in LGF-80(Low-damage Guar Fluid)oil flooding recoverable fracturing fluid system were mainly studied.In addition,the finite element numerical simulation experiment of hydraulic fracturing was adopted to study the influence of the friction coefficient of natural fracture surfaces on fracture propagation and formation of the fracture network.The geometric complexity of fracture networks was systematically quantified under varying frictional coefficients of natural fracture surfaces through multi-parametric characterization and morphometric analysis.The research results show that graphite micro-particles reduce friction and drag.Based on this,this paper proposes a new idea of graphite micro-particles as an additive in the LGF-80 oil flooding recoverable fracturing fluid system to reduce friction on the fracture surface. 展开更多
关键词 SHALE micro-sliding friction fracture network complexity fracturing fluid optimization
在线阅读 下载PDF
Adsorption and retention of fracturing fluid and its impact on gas transport in tight sandstone with different clay minerals
13
作者 Yi-Jun Wang Li-Jun You +4 位作者 Jian Yang Yi-Li Kang Ming-Jun Chen Jia-Jia Bai Jian Tian 《Petroleum Science》 2025年第1期370-383,共14页
To elucidate the adsorption characteristics and retention mechanisms of fracturing fluids in diverse clay minerals,we conducted on-line nuclear magnetic resonance(NMR)and atomic force microscopy(AFM)experiments.The de... To elucidate the adsorption characteristics and retention mechanisms of fracturing fluids in diverse clay minerals,we conducted on-line nuclear magnetic resonance(NMR)and atomic force microscopy(AFM)experiments.The depth and extent of solid phase damage are determined by the ratio between the size of fine fractions in fracturing fluid residue and the pore-throat size in experiments.Poor physical properties(K<0.5 mD)result in a more preferential flow pathway effect during flowback,and the stepwise incremental pressure differential proves to be more effective for the discharge of fracturing fluid in submicron pore throats.The permeability is significantly influenced by the differential distri-bution of retained fracturing fluid,as supported by direct experimental evidence.The presence of good physical properties(K>0.5 mD)combined with a scattered distribution of retained fracturing fluid is associated with high gas phase recovery permeability,whereas a continuous sheet-like distribution results in low recovery permeability.The expansive surface area and presence of filamentous illite minerals facilitate the multiple winding and adsorption of fracturing fluids,demonstrating strong hydrogen-bonding,multi-layering and multiple adsorption properties.The geological characteristics of the main gas formations exhibit significant variation,and the severity of damage caused by fracturing fluids occurs in diverse sequences.To address this issue,a differentiated strategy for optimizing frac-turing fluids has been proposed. 展开更多
关键词 Clay minerals Formation damage fracturing fluid retention distribution Adsorption morphology
原文传递
Intermolecular interactions induced property improvement for clean fracturing fluid by deep eutectic solvents
14
作者 Xiang-Yu Wang Ming-Wei Zhao +6 位作者 Xu-Hao Wang Peng Liu Meng-Yao Fan Teng Li Zhen-Feng Ma Ying-Jie Dai Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3540-3552,共13页
Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-p... Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-price,low-toxicity,chemical stability and flexible designability.In this work,DESs were synthesized by mixing hydrogen bond acceptors(HBAs)and a given hydrogen bond donor(HBD)to explore their underlying influence on CFF properties based on the intermolecular interactions.The hydrogen-bonding,van der Waals and electrostatic interactions between DES components and surfactants improved the CFF properties by promoting the arrangement of surfactants at interface and enhancing the micelle network strength.The HBD enhanced the resistance of CFF for Ca^(2+) due to coordination-bonding interaction.The DESs composed of choline chloride(ChCl)and malonic acid show great enhancement for surface,rheology,temperature resistance,salt tolerance,drag reduction,and gel-breaking performance of CFFs.The DESs also improved the gel-breaking CFF-oil interactions,increasing the imbibition efficiencies to 44.2%in 74 h.Adjusting HBAs can effectively strengthen the intermolecular interactions(e.g.,HBA-surfactant and HBD-surfactant interactions)to improve CFF properties.The DESs developed in this study provide a novel strategy to intensify CFF properties. 展开更多
关键词 Deep eutectic solvents(DESs) Clean fracturing fluids(CFFs) Intermolecular interactions Property improvement
原文传递
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:6
15
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity fracturing fluid Hydraulic fracturing Reservoir damage
原文传递
Probing the influence of secondary fracture connectivity on fracturing fluid flowback efficiency 被引量:3
16
作者 Yi-Ning Wu Li-Sha Tang +5 位作者 Yuan Li Li-Yuan Zhang Xu Jin Ming-Wei Zhao Xiang Feng Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期973-981,共9页
A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture v... A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency. 展开更多
关键词 fracturing fluid Secondary fracture connectivity Flowback efficiency Dual media Microfluidic model
原文传递
Investigation on microscopic invasion characteristics and retention mechanism of fracturing fluid in fractured porous media 被引量:3
17
作者 Qi-An Da Chuan-Jin Yao +3 位作者 Xue Zhang Xiao-Pu Wang Xiao-Huan Qu Guang-Lun Lei 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1745-1756,共12页
Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the ... Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the fracture-matrix zone are still unclear. In this work, a microscopic model reflecting the characteristics of the fracture-matrix zone was designed. Based on the microfluidic experimental method, the process of fracturing fluid invasion, flowback and retention in the fracture-matrix zone was investigated visually and characterized quantitatively. The factors and mechanisms affecting fracturing fluid retention in the fracture-matrix zone were analyzed and clarified. The results indicated that in the invasion process, the frontal swept range of slick water was larger than that of the guar gum fracturing fluid, and the oil displacement efficiency and damage rate were lower than those of the guar gum fracturing fluid under the same invasion pressure. With the increase in invasion pressure, the damage rate of slick water increased from 61.09% to 82.77%, and that of the guar gum fracturing fluid decreased from 93.45% to83.36%. Before subsequent oil production, the invaded fracturing fluid was mainly concentrated in the medium-high permeability area of the fracture-matrix zone. The main resistance of slick water was capillary force, while that of the guar fracturing fluid was mainly viscous resistance. The fracturing fluid retention was most serious in the low permeability region and the region near the end of the fracture.The experimental and numerical simulation results showed that increasing the production pressure difference could improve the velocity field distribution of the fracture-matrix zone, increase the flowback swept range and finally reduce the retention rate of the fracture fluid. The retention mechanisms of slick water in the fracture-matrix zone include emulsion retention and flow field retention, while those of the guar gum fracturing fluid include viscous retention and flow field retention. Emulsion retention is caused by capillary force and flow interception effect. Viscous retention is caused by the viscous resistance of polymer, while flow-field retention is caused by uneven distribution of flowback velocity. 展开更多
关键词 Microfluidic experiment Reservoir damage fracturing fluid Fracture-matrix zone Retention mechanism
原文传递
Economic Assessment and Review of Waterless Fracturing Technologies in Shale Resource Development: A Case Study 被引量:2
18
作者 Iman Oraki Kohshou Reza Barati +6 位作者 Meaghan Cassey Yorro Tim Leshchyshyn Adebola T. Adejumo Usman Ahmed Imre Kugler Murray Reynolds James McAndrew 《Journal of Earth Science》 SCIE CAS CSCD 2017年第5期933-948,共16页
Our database tracking of USA water usage per well indicates that traditionally shale operators have been using, on average 3 to 6 million gallons of water; even up to 8 million for the en- tire life cycle of the well ... Our database tracking of USA water usage per well indicates that traditionally shale operators have been using, on average 3 to 6 million gallons of water; even up to 8 million for the en- tire life cycle of the well based on its suitability for re-fracturing to stimulate their long and lateral ho- rizontal welis. According to our data, sourcing, storage, transportation, treatment, and disposal of this large volume of water could account for up to 10% of overall drilling and completion costs. With in- creasingly stringent regulations governing the use of fresh water and growing challenges associated with storage and use of produced and flowback water in hydraulic fracturing, finding alternative sources of fracturing fluid is already a hot debate among both the scientific community and industry experts. On the other hand, waterless fracturing technology providers claim their technology can solve the concerns of water availability for shale development. This study reviews high-level technical issues and opportunities in this challenging and growing market and evaluates key economic drivers behind water management practices such as waterless fracturing technologies, based on a given shale gas play in the United States and experience gained in Canada. Water costs are analyzed under a variety of scenarios with and without the use of (fresh) water. The results are complemented by surveys from several oil and gas operators. Our economic analysis shows that fresh water usage offers the greatest economic return. In regions where water sourcing is a challenge, however, the short-term economic advantage of using non-fresh water-based fracturing outweighs the capital costs required by waterless fracturing methods. Until waterless methods are cost competitive, recycled water usage with low treatment offers a similar net present value (NPV) to that of sourcing freshwater via truck, for in- stance. 展开更多
关键词 shale gas gas exploration fracturing techology fracturing fluid waterless fracturing.
原文传递
A novel triple responsive smart fluid for tight oil fracturing-oil expulsion integration 被引量:2
19
作者 Ming-Wei Gao Ming-Shan Zhang +5 位作者 Heng-Yi Du Ming-Wei Zhao Cai-Li Dai Qing You Shun Liu Zhe-Hui Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期982-992,共11页
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,... The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days). 展开更多
关键词 fracturing-oil expulsion integration Tight oil Triple responsive smart fluid "Pseudo-gemini"zwitterionic surfactant fracturing fluid Spontaneous imbibition
原文传递
Experimental study on the adverse effect of gel fracturing fluid on gas sorption behavior for Illinois coal 被引量:2
20
作者 Qiming Huang Jun Li +1 位作者 Shimin Liu Gang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1250-1261,共12页
Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately dama... Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately damages the flowability of the formation.In this study,we quantified the gel-based fracturing fluid induced damages on gas sorption for Illinois coal in US.We conducted the high-pressure methane and CO_(2)sorption experiments to investigate the sorption damage due to the gel residue.The infrared spectroscopy tests were used to analyze the evolution of the functional group of the coal during fracturing fluid treatment.The results show that there is no significant chemical reaction between the fracturing fluid and coal,and the damage of sorption is attributed to the physical blockage and interactions.As the concentration of fracturing fluid increases,the density of residues on the coal surface increases and the adhesion film becomes progressively denser.The adhesion film on coal can apparently reduce the number of adsorption sites for gas and lead to a decrease of gas sorption capacity.In addition,the gel residue can decrease the interconnectivity of pore structure of coal which can also limit the sorption capacity by isolating the gas from the potential sorption sites.For the low concentration of fracturing fluid,the Langmuir volume was reduced to less than one-half of that of raw coal.After the fracturing fluid invades,the desorption hysteresis of methane and CO_(2)in coal was found to be amplified.The impact on the methane desorption hysteresis is significantly higher than CO_(2)does.The reason for the increasing of hysteresis may be that the adsorption swelling caused by the residue adhered on the pore edge,or the pore blockage caused by the residue invasion under high gas pressure.The results of this study quantitatively confirm the fracturing fluid induced gas sorption damage on coal and provide a baseline assessment for coal fracturing fluid formulation and technology. 展开更多
关键词 Hydraulic fracturing fracturing fluid Coalbed methane Sorption hysteresis
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部