期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams 被引量:9
1
作者 Su Ben-Yu Yue Jian-Hua 《Applied Geophysics》 SCIE CSCD 2017年第2期216-224,322,共10页
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when... Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production. 展开更多
关键词 water-conducting fractured zones in coal seams coalfield goaf electrical anisotropy surface roughness formation water resistivity formation pressure
在线阅读 下载PDF
A method for predicting the water-flowing fractured zone height based on an improved key stratum theory 被引量:6
2
作者 Jianghui He Wenping Li +3 位作者 Kaifang Fan Wei Qiao Qiqing Wang Liangning Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期61-71,共11页
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation... In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method. 展开更多
关键词 Coal mining Water-flowing fractured zone height Prediction method Improved key stratum theory
在线阅读 下载PDF
Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir 被引量:6
3
作者 XU Zhimin SUN Yajun +2 位作者 DONG Qinghong ZHANG Guowei LI Shi 《Mining Science and Technology》 EI CAS 2010年第3期434-438,共5页
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu... It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs. 展开更多
关键词 coal mining under reservoir water-flow fractured zone development law water inrush of mine predicting model
在线阅读 下载PDF
Analysis of the Mechanism of Water Inrush Geohazards in Deep-Buried Tunnels under the Complex Geological Environment of Karst Cave-Fractured Zone 被引量:3
4
作者 Weishe Zhang Yuyong Jiao +3 位作者 Guohua Zhang Xi Zhang Guangzhao Ou Zhiping Lin 《Journal of Earth Science》 SCIE CAS CSCD 2022年第5期1204-1218,共15页
To study the mechanism and evolution process of water inrush geohazards under the complex geological environment of the karst cave-fractured zone,a large-scale physical threedimensional(3 D)model test was first perfor... To study the mechanism and evolution process of water inrush geohazards under the complex geological environment of the karst cave-fractured zone,a large-scale physical threedimensional(3 D)model test was first performed.Then the conceptual model for the evolution process of water inrush geohazards and the simplified theoretical model for the critical hydraulic pressure were both established based on the main characteristics of the water inrush geohazard in the engineering background and that in the model test.A new method was developed for modeling the geological environment of the karst cave-structural plane,and two formulae describing the critical water pressure of water inrush geohazards under two failure models of tensile-shear fracture failure and compressionshear fracture failure were also deduced based on fracture mechanics.The results showed that:(1)the evolution process of the water inrush geohazard can be divided into four stages,which include the initial balance,the propagation of original cracks,the formation of the dominant water inrush channel,and the instability of the waterproof rock mass;(2)the suddenness of water inrush geohazards becomes stronger with the increase of the hydraulic pressure;(3)the calculated critical hydraulic pressure of water inrush geohazards is similar to the measured critical hydraulic pressure in the model test,which validated the accuracies of the theoretical model,and the failure model of water inrush geohazards in this research is compression-shear fracture failure. 展开更多
关键词 karst cave fractured zone water inrush MECHANISM critical hydraulic pressure model test engineering geology
原文传递
Fractured zone height of longwall mining and its effects on the overburden aquifers 被引量:12
5
作者 Guo Wenbing Zou Youfeng Hou Quanlin 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期603-606,共4页
As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mini... As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers.In order to study this problem,piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine.Large amounts of pre-mining,during mining and post-mining monitoring data were collected.Based on the data,the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied.The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m,the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall.The height of the fractured zone is 72.7-85.3 m in the geological and mining conditions.The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results.Therefore,it is not always safe to use them for analyses while mining under water bodies. 展开更多
关键词 Longwall mining fractured zone Mining under water body Overburden aquifer
在线阅读 下载PDF
Height Detection and Analysis of Water Flowing Fractured Zone of Coal Face
6
作者 Ziyang Feng 《Computational Water, Energy, and Environmental Engineering》 2021年第4期131-139,共9页
Taking 91105 working face as the research object, the observation method of water flowing fracture<span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> zo... Taking 91105 working face as the research object, the observation method of water flowing fracture<span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> zone and the layout of mining holes were determined by analyzing the field geological structure</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It was shown that the fractured zone height and the ratio given by the measured method were 52.33 and 12.46, respectively. By the numerical simulation method with the software of UDEC, the fractured zone height and the ratio were 42.5 and 10.12. By comparison of measured height data and UDEC numerical simulation, there were some differences between the measured height and the calculated results of UDEC numerical simulation method. The method of simulation can be used as the technical basis for the design of waterproof coal pillar in the future.</span> 展开更多
关键词 Water Flowing fractured zone Height Detection Fracture Mining Ratio Numerical Simulation
在线阅读 下载PDF
Deformation mechanism and NPR anchor cable truss coupling support in tunnel through fault fracture zone
7
作者 HUO Shusen TAO Zhigang +2 位作者 HE Manchao WANG Fengnian XU Chuang 《Journal of Mountain Science》 2025年第1期354-374,共21页
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m... To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions. 展开更多
关键词 Fault fracture zone Large deformation Nuclear magnetic resonance NPR anchor cable truss support Coupled simulation
原文传递
Anisotropic fracture behavior and corresponding fracture process zone of laminated shale through three-point bending tests
8
作者 Peng Chu Heping Xie +3 位作者 Jianjun Hu Minghui Li Li Ren Cunbao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期757-774,共18页
Understanding the anisotropic fracture behavior and the characteristics of the fracture process zone(FPZ)under size effects in laminated rocks,as well as its role in rock fracturing,is crucial for various engineering ... Understanding the anisotropic fracture behavior and the characteristics of the fracture process zone(FPZ)under size effects in laminated rocks,as well as its role in rock fracturing,is crucial for various engineering applications.In this study,three-point bending tests were conducted on shale specimens with varying bedding angles and sizes.The anisotropic characteristics and size effects of fracture parameters were revealed.A comparative analysis was performed on the evolutions of FPZs computed using size effect theory,digital image correlation(DIC),and linear elastic fracture mechanics.The results divulged that:(i)With increasing bedding angles,there is a noticeable decrease in apparent fracture toughness(KICA),apparent fracture energy(GICA),and nominal strength(σ_(Nu)).When the bedding angle of shale is less than 45°,the crack propagation and fracture parameters are mainly influenced by the matrix.Contrary,shale with bedding angles greater than 60°,the crack propagation and fracture parameters are mainly controlled by the bedding.When the bedding angle is between 45°and 60°,the fracture propagation evolves from permeating the matrix to extending along the bedding;(ii)The fracture parameters exhibit significant size dependent behavior,as KICA and GICA rise with increasing specimen size,butσNu falls with increasing specimen sizes.The fracture parameters align with the theoretical predictions of Bažant size effect law;and(iii)The lengths of DIC-based FPZ,effective FPZ,and inelastic zone follow W-shape variations with bedding angle.The dimensionless sizes of FPZ and inelastic zone decrease with specimen size,indicating a size effect.Furthermore,there is a negative relation between KICA and the dimensionless size of the FPZ,whileσNu is positively correlated to the dimensionless size of the FPZ.This highlights the essential role of the FPZ in the size effect of rock fracture.The bedding angle exerts an influence on the FPZ,subsequently affecting the anisotropic fracture and size-dependent behavior of shale. 展开更多
关键词 ANISOTROPIC Size effect Fracture process zone Fracture toughness Fracture energy
在线阅读 下载PDF
Plugging mode of flaky lost circulation materials within fractures and mechanism to enhance pressure-bearing capacity for the plugging zone
9
作者 Kun Guo Yi-Li Kang +3 位作者 Cheng-Yuan Xu Chong Lin Ling-Jie Zhang Li-Jun You 《Petroleum Science》 2025年第8期3315-3332,共18页
During drilling operations in deep fractured tight gas reservoirs,lost circulation of working fluid frequently occurs due to the formationʼs low pressure-bearing capacity.Adding lost circulation materials(LCMs)to dril... During drilling operations in deep fractured tight gas reservoirs,lost circulation of working fluid frequently occurs due to the formationʼs low pressure-bearing capacity.Adding lost circulation materials(LCMs)to drilling fluids is the most common method for controlling lost circulation.Among these,granular LCMs are widely used,but the application frequency of flaky LCMs has been increasing annually due to their unique morphology.However,the migration and plugging behavior of flaky LCMs within fractures,and the mechanisms enhancing the pressure-bearing capacity of the plugging zone are not well understood.Therefore,this study conducted visual plugging experiments and dynamic fracture plugging experiments to evaluate the plugging mode and pressure-bearing capacity of the plugging slurry with various particle sizes and concentrations of flaky LCMs.The experimental results demonstrate that the fracture plugging process can be divided into four stages:uniform flow stage of the plugging slurry,formation and development stage of the bridging area,formation and development stage of the plugging area,and pressure-bearing stage of the plugging zone.The inclusion of flaky LCMs notably reduces the duration of stages 1 and 2,while simultaneously increasing the proportion of the plugging zone and enhancing its surface porosity.Flaky LCMs reduce the effective fracture width through“interception”and“co-bridging”modes,thus improving plugging zone formation efficiency.Appropriate particle size and concentration of flaky LCMs increase the area and length of the plugging zone.This reduces the fracture width increment caused by injection pressure and enhances frictional force between the plugging zone and fracture surface,thereby improving the pressure-bearing capacity of the plugging zone.However,excessively high concentrations of flaky LCMs result in decreased structural stability of the plugging zone,and excessively large particle sizes increase the risk of plugging outside fracture inlet.The recommended concentration of flaky LCMs in the plugging slurry is 2%–3%,with a particle size 1.2 to 1.5 times that of the bridging granular LCMs and not exceeding twice the fracture width.This study provides a theoretical foundation for selecting LCMs and designing plugging formulations for field applications. 展开更多
关键词 Lost circulation Flaky lost circulation materials Fracture plugging zone Visualization Pressure-bearing capacity
原文传递
Fracture characteristics and process zone evolution in sandstone under freeze-thaw cycles
10
作者 MeiLu Yu ZhongWen Wang +5 位作者 Ding Ma JinJin Ge YaTing Wang HaoTian Xie GenShui Wu YaoYao Meng 《Research in Cold and Arid Regions》 2025年第4期217-228,共12页
This study investigates the fracture characteristics and the fracture process zone(FPZ)of mode I fracture in sandstone,aiming to analyze the propagation behaviors of mode I crack under different freeze-thaw cycles.Sem... This study investigates the fracture characteristics and the fracture process zone(FPZ)of mode I fracture in sandstone,aiming to analyze the propagation behaviors of mode I crack under different freeze-thaw cycles.Semicircular bending tests(SCB)were conducted using different freeze-thaw cycles to evaluate mode I fracture toughness,FPZ dynamics,and macroscopic microscopic features.Digital image correlation(DIC)and scanning electron microscopy(SEM)techniques were employed for detailed analysis.Experimental results reveal that freeze-thaw cycling leads to the widening of both preexisting and newly formed microcracks between internal particles.Under external loading,crack propagation deviates from prefabricated paths,forming serrated crack patterns.The FPZ initiates at the prefabricated crack tip and extends toward the loading end,exhibiting an arcshaped tip shape.The FPZ length increases with loading but decreases after reaching a peak value.With additional freeze-thaw cycles,the maximum FPZ length first increases and then diminishes. 展开更多
关键词 Freeze-thaw cycles Fracture toughness Semi-circular bending tests Fracture process zone
在线阅读 下载PDF
Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs 被引量:5
11
作者 XU Chengyuan YAN Xiaopeng +2 位作者 KANG Yili YOU Lijun ZHANG Jingyi 《Petroleum Exploration and Development》 2020年第2期430-440,共11页
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu... Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs. 展开更多
关键词 deep layer fractured reservoir lost circulation fracture plugging zone multi-scale structure strength and stability loss control material
在线阅读 下载PDF
Numerical investigation of geostress influence on the grouting reinforcement effectiveness of tunnel surrounding rock mass in fault fracture zones 被引量:2
12
作者 Xiangyu Xu Zhijun Wu +3 位作者 Lei Weng Zhaofei Chu Quansheng Liu Yuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期81-101,共21页
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I... Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed. 展开更多
关键词 Numerical manifold method(NMM) Grouting reinforcement Geostress condition Fault fracture zone Tunnel excavation
在线阅读 下载PDF
Unconfined compressive strength and failure behaviour of completely weathered granite from a fault zone 被引量:2
13
作者 DU Shaohua MA Jinyin +1 位作者 MA Liyao ZHAO Yaqian 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2140-2158,共19页
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests... Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition. 展开更多
关键词 Fault fracture zone Completely weathered granite(CWG) Unconfined compression strength(UCS) Multiple nonlinear regression model
原文传递
Optimum Calculation of Coal Pillars in Inclined Weathered Oxidation Zone 被引量:1
14
作者 Yingbo Zhang Shi Chen 《Energy Engineering》 EI 2021年第3期707-714,共8页
In the mining process of coal mine,waterproof coal pillars should be set between the weathered oxidation zone and the first mining face.In order to determine the reasonable upper limit of the first mining face of Hong... In the mining process of coal mine,waterproof coal pillars should be set between the weathered oxidation zone and the first mining face.In order to determine the reasonable upper limit of the first mining face of Hongyi Coal Mine,the waterproof coal pillar needs to be wide enough to resist the lateral hydrostatic pressure of the oxidation zone,and to ensure that the top plate aquifer does not run through the water guide crack zone,while also liberating as much stagnant coal as possible.In this paper,the first coal mine face’s waterproof coal pillar was calculated using conventional and optimized calculation methods,taking into account the dip angle of the coal seam,the height of the water-guide crack zone,and the rock shift influence zone,and finally the upper limit of the first face of Hongyi Coal Mine was determined. 展开更多
关键词 efflorescent oxygenized belts upper limit water flowing fractured zone waterproof pillar
在线阅读 下载PDF
Methodology and Application of Deep Geothermal Sounding in Low-Resistance Cover Areas
15
作者 Qiao Yong Zhang Hui 《Applied Geophysics》 2025年第1期99-109,233,234,共13页
Taking the Qihe area as an example,this paper compared various geophysical exploration methods in view of the problems of urban construction,deep thermal reservoir burial,and vast overlying low-resistance shield layer... Taking the Qihe area as an example,this paper compared various geophysical exploration methods in view of the problems of urban construction,deep thermal reservoir burial,and vast overlying low-resistance shield layer in deep karst geothermal exploration.A Controlledsource audio magnetotelluric(CSAMT)method was taken to overcome the problems and detect deep stratigraphic structures in the study area.The acquisition parameters of CSAMT were optimized to take into account the exploration depth and signal-to-noise ratio.The distortion of data in the near and transition zone was eliminated by the inversion of equivalent whole-region apparent resistivity,so as to achieve the purpose of deep sounding.Based on the resistivity profile resulting from the proposed CSAMT method,three faults were inferred and one low-resistance anomaly zone in the area was traced.The results of the profile interpretation were verified by drilling.The inferred stratigraphic boundaries and low-resistance anomaly zone were basically in agreement with the drilling results,thereby proving the eff ectiveness of the CSAMT method for deep geothermal exploration in low-resistance coverage areas.This method could provide technical support for deep geothermal exploration in similar areas. 展开更多
关键词 CSAMT low-resistivity shielding Ordovician karst geothermal reservoir fracture zone whole region apparent resistivity
在线阅读 下载PDF
Exploring the mechanism of cohesive cross-layer fracture in laminated shale
16
作者 Lei Chen Haibo Wang +4 位作者 Guangqing Zhang Fengxia Li Tong Zhou Jia Cui Wei Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4966-4981,共16页
The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is close... The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is closely related to fracturing effects.In this paper,the laminated shale was selected to conduct three-point bending experiments using digital image correlation(DIC)and acoustic emission(AE)techniques,which revealed that the propagation path of cross-layer fractures exhibits dislocation features.The cohesive fracture mechanism of cross-layer fractures is investigated from the viewpoint of the fracture process zone(FPZ),which displays the characteristics of intermittence and dislocation during fracture development.A computational criterion for predicting the dislocation of cross-layer fracture at the interface is proposed,which shows that the maximum dislocation range does not exceed 72%of the FPZ length.Considering the mechanical differences between adjacent layers of laminated shale,the cohesive zone model of cross-layer fracture is discussed,from which the constitutive relationship and fracture energy during FPZ development are characterized,and the discontinuous nature of the constitutive relationship is found.This study improves the understanding of the geometry and cohesive fracture mechanism of the cross-layer fracture and provides valuable insights for field fracturing in shale reservoirs. 展开更多
关键词 Laminated shale Fracture process zone(FPZ) Cohesive zone model Hydraulic fracturing Digital image correlation(DIC)
在线阅读 下载PDF
Relationship between Remotely Sensed Vegetation Change and Fracture Zones Induced by the 2008 Wenchuan Earthquake, China 被引量:5
17
作者 王玲 田兵伟 +1 位作者 Alaa Masoud Katsuaki Koike 《Journal of Earth Science》 SCIE CAS CSCD 2013年第2期282-296,共15页
The Wenchuan earthquake triggered cascading disasters of landslides and debris flows that caused severe vegetation damage. Fracture zones can affect geodynamics and spatial pattern of vegetation damage. A segment trac... The Wenchuan earthquake triggered cascading disasters of landslides and debris flows that caused severe vegetation damage. Fracture zones can affect geodynamics and spatial pattern of vegetation damage. A segment tracing algorithm method was applied for identifying the regional fracture system through lineament extractions from a shaded digital elevation model with 25 m mesh for southern Wenchuan. Remote sensing and geographic information system techniques were used to analyze the spatiotemporal vegetation pattern. The relationship between vegetation type identified from satellite images and lineament density was used to characterize the distribution patterns of each vegetation type according to fracture zones. Broad-leaved forest, mixed forest, and farmland persist in areas with moderate lineament density. Deciduous broad-leaved and coniferous forest persists in less frac- tured areas. Shrub and meadow seem to be relatively evenly distributed across all lineament densities.Meadow, farmland, and shrub persist in the fractured areas. Changes of spatial structure and correlation between vegetation patterns before and after the earthquake were examined using semivariogram analysis of normalized difference vegetation indices derived from Landsat enhanced thematic mapper images. The sill values of the semivariograms show that the spatial heterogeneity of vegetation covers increased after the earthquake. Moreover, the anisotropic behaviors of the semivariograms coincide with the vegetation changes due to the strikes of fracture zones. 展开更多
关键词 fracture zone vegetation pattern LINEAMENT remote sensing GEOSTATISTICS
原文传递
Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining 被引量:5
18
作者 Lei Li Fengming Li +2 位作者 Yong Zhang Daming Yang Xue Liu 《International Journal of Coal Science & Technology》 EI 2020年第1期208-215,共8页
To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zone... To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies. 展开更多
关键词 Backfill mining Strata failure Key strata Heights of caved and fracture zones
在线阅读 下载PDF
Height prediction of water-flowing fracture zone with a geneticalgorithm support-vector-machine method 被引量:3
19
作者 Enke Hou Qiang Wen +2 位作者 Zhenni Ye Wei Chen Jiangbo Wei 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期740-751,共12页
Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth st... Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth study of the influence of coal seam thickness,burial depth,working face length,and roof category on the height of a WFFZ,we proposed that the proportion of hard rock in different roof ranges should be used to characterise the influence of roof category on WFFZ height.Based on data of WFFZ height and its influence index obtained from field observations,a prediction model is established for WFFZ height using a combination of a genetic algorithm and a support-vector machine.The reliability and superiority of the prediction model were verified by a comparative study and an engineering application.The results show that the main factors affecting WFFZ height in the study area are coal seam thickness,burial depth,working face length,and roof category.Compared with multiple-linear-regression and back-propagation neural-network approaches,the height-prediction model of the WFFZ based on a genetic-algorithm support-vector-machine method has higher training and prediction accuracy and is more suitable for WFFZ prediction in the mining area. 展开更多
关键词 Water-flowing fracture zone Roof category Proportion of hard rock Genetic algorithm Support-vector machine
在线阅读 下载PDF
Fractal Feature of Western Fracture Zone in Xikuangshan Antimony Mine and its Geological Significance 被引量:2
20
作者 TANG Shi-jia GAO Guang-ming +1 位作者 PENG En-sheng SUN Zhen-jia 《Journal of Central South University》 SCIE EI CAS 2000年第4期212-215,共4页
In Xikuangshan antimony ore-field, the western fracture zone is a composite of major fault, F75, and its secondary faults, such as F71, F72 and F3 etc.. On plane, the fracture zone scatters from southwest to northeast... In Xikuangshan antimony ore-field, the western fracture zone is a composite of major fault, F75, and its secondary faults, such as F71, F72 and F3 etc.. On plane, the fracture zone scatters from southwest to northeast, and concentrates from upper to deeper level on profile. All ore-bodies exist in the carbonate of footwall of the major fault or that of the footwall of its secondary faults. From 480 m and 320 m to 120 m level, the fractal dimensional number of the fault system decreases from 1.482 2 and 1.448 6 to 1.339 2, which indicates the form of fracture zone becoming more simple at deeper level. And in five sub-ranges, the III and IV sub-ranges are the known area, and the I, II and V sub-ranges are unknown. The fractal studies of the western fracture zone in these sub-ranges show that the fractal dimensional numbers of the I and II, being 1.201 5 and 1.278 0, respectively, are smaller than that of the III and IV, being 1.475 9 and 1.576 9, respectively; and that of the V, being 1.571 2, keeps with that of the III, IV sub-ranges. So mineralization is not well in I and II sub-ranges, and V sub-range is the best to benefit mineralization. 展开更多
关键词 FRACTAL fractal dimension fracture zone Xikuangshan antimony-mine
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部