期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
The tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy: A case study in the Wangyao Oilfield of Ordos Basin, China 被引量:7
1
作者 Zhao Xiaoming Liu Li +2 位作者 Hu Jialiang Zhou Xiaojun Li Min 《Petroleum Science》 SCIE CAS CSCD 2014年第3期363-375,共13页
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit... Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling. 展开更多
关键词 Ultra-low permeability sandstone tectonic fracture modeling outcrop analog subsurface reservoir 3D modeling
原文传递
A fracture model for assessing tensile mode crack growth resistance of rocks 被引量:5
2
作者 Mingdong Wei Feng Dai +1 位作者 Yi Liu Ruochen Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期395-411,共17页
Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict te... Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict tensile mode(mode I)failure loads of cracked rocks.The basic principle of the model is to estimate the reference crack corresponding to the fracture process zone(FPZ)based on the maximum normal strain(MNSN)ahead of the crack tip,and then use the effective crack to calculate the fracture toughness.We emphasize that the non-singular stress/strain terms should be considered in the description of the MNSN.In this way,the FPZ,non-singular terms and the biaxial stress state at the crack tip are simul-taneously considered.The principle of the model is explicit and easy to apply.To verify the proposed model,laboratory experiments were performed on a rock material using six groups of specimens.The model predicted the specimen geometry dependence of the measured fracture toughness well.More-over,the potential of the model in analyzing the size effect of apparent fracture toughness was discussed and validated through experimental data reported in the literature.The model was demonstrated su-perior to some commonly used fracture models and is an excellent tool for the safety assessment of cracked rock structures. 展开更多
关键词 Brittle fracture model fracture toughness Maximum normal strain(MNSN) fracture process zone(FPZ) Size effect
在线阅读 下载PDF
An efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete 被引量:2
3
作者 Lei Xu Lei Jiang +1 位作者 Ye-fei Huang Qing-wen Ren 《Water Science and Engineering》 EI CAS CSCD 2022年第4期337-347,共11页
Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling.This leads to a high computational cost for mesoscale modeling and thus slows the development of multi... Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling.This leads to a high computational cost for mesoscale modeling and thus slows the development of multiscale modeling of hydraulic mass concrete structures.To overcome this obstacle,an efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete was developed based on the concept of the governing mesostructure.The mesostructure was characterized by a critical aggregate size.Coarse aggregates smaller than the critical size were homogenized into mortar matrices.Key issues in mesostructure generation of fully-graded hydraulic concrete are discussed,as is the development of mesoscale finite element modeling methodology.The basic concept and implementation procedures of the proposed approach are also described in detail.The numerical results indicated that the proposed approach not only significantly improves the compu-tational efficiency of mesoscale modeling but also captures the dominant fracturing mechanism at the mesoscale and reproduces reasonable fracture properties at the macroscale.Therefore,the proposed approach can serve as a basis for multiscale fracture modeling of hydraulic mass concrete structures. 展开更多
关键词 Fully-graded hydraulic concrete MESOSCALE fracture modeling Governing mesostructure Critical aggregate size
在线阅读 下载PDF
A Pipeline Fracture Model of Hydrogen-induced Cracking 被引量:1
4
作者 Dong Shaohua Fan Fei +1 位作者 Gu Zhiyu Lv Yingmin 《Petroleum Science》 SCIE CAS CSCD 2006年第1期72-84,共13页
The relationship between hydrogen concentration and crack tip stress, strain field, hydrogen diffusion and internal pressure respectively in the crack tip process zone was investigated, and the length of the crack tip... The relationship between hydrogen concentration and crack tip stress, strain field, hydrogen diffusion and internal pressure respectively in the crack tip process zone was investigated, and the length of the crack tip process zone of hydrogen-induced cracking (HIC) was determined. Based on the mechanism of fracture of micro-crack nucleation, a dislocation model was presented for the fracture criteria of HIC. The influence factors of pipeline tube fracture ductile KISCC in the presence of hydrogen was analyzed, and the critical pressure bearing capability of a pipeline with hydrogeninduced cracking and the critical J-integrity (JISCC) were calculated, which is very important for pipeline safety. 展开更多
关键词 PIPELINE HIC fracture model pressure bearing capability J-integrity
原文传递
Performance-based fractal fracture model for complex fracture network simulation 被引量:1
5
作者 Wen-Dong Wang Yu-Liang Su +2 位作者 Qi Zhang Gang Xiang Shi-Ming Cui 《Petroleum Science》 SCIE CAS CSCD 2018年第1期126-134,共9页
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co... The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity. 展开更多
关键词 Fractal geometry Fractal fracture model Complex fracture network characterization Contributing reservoirvolume REFRACTURING
原文传递
Naturally fractured hydrocarbon reservoir simulation by elastic fracture modeling 被引量:1
6
作者 Mehrdad Soleimani 《Petroleum Science》 SCIE CAS CSCD 2017年第2期286-301,共16页
Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstr... Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstructured grids or a structured grid coupled with locally unstructured grids and discrete fracture models.These methods suffer from drawbacks such as lack of flexibility and of ease of updating.In this study,I combined fracture modeling by elastic gridding which improves flexibility,especially in complex reservoirs.The proposed model revises conventional modeling fractures by hard rigid planes that do not change through production.This is a dubious assumption,especially in reservoirs with a high production rate in the beginning.The proposed elastic fracture modeling considers changes in fracture properties,shape and aperture through the simulation.This strategy is only reliable for naturally fractured reservoirs with high fracture permeability and less permeable matrix and parallel fractures with less cross-connections.Comparison of elastic fracture modeling results with conventional modeling showed that these assumptions will cause production pressure to enlarge fracture apertures and change fracture shapes,which consequently results in lower production compared with what was previously assumed.It is concluded that an elastic gridded model could better simulate reservoir performance. 展开更多
关键词 Reservoir performance Discrete fracture model Naturally fractured reservoir History matching Elastic gridding
原文传递
Study on a Dual Embedded Discrete Fracture Model for Fluid Flow in Fractured Porous Media 被引量:1
7
作者 Heng Zhang Tingyu Li +3 位作者 Dongxu Han Daobing Wang Dongliang Sun Bo Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期5-21,共17页
Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the p... Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the prospect of embedded discrete fracture model(EDFM)is more and more bright.However,since the size of the fractures in the actual reservoir varies greatly,a very fine grid should be used which leads to a huge burden to the computing resources.To address this challenge,in the present paper,an upscaling based model is proposed.In this model,the flow in large-scale fractures is directly described by the EDFM while that in the small-scale fractures is upscaled through local simulation by EDFM.The EDFM is used to simulate the large-and small-scale fractures independently two times,so the new model is called dual embedded discrete fracture model(D-EDFM).In this paper,the detailed implementation process of D-EDFM is introduced and,through test cases,it is found the proposed model is a feasible method to simulate the flow in fractured porous media. 展开更多
关键词 Dual embedded discrete fracture model(D-EDFM) local upscaling fractured
在线阅读 下载PDF
Simulation and evaluation for acid fracturing of carbonate reservoirs based on embedded discrete fracture model 被引量:1
8
作者 Wang Tao Yang Yan +4 位作者 Peng Yu Zhao Jinzhou Qi Tao Zeng Ji Hou Peipei 《Natural Gas Industry B》 2021年第6期637-649,共13页
Acid fracturing is an important means of reservoir stimulation,whose purpose is to form an incompletely closed acid-etched fracture as the flow channel for oil and gas during production.The length and conductivity of ... Acid fracturing is an important means of reservoir stimulation,whose purpose is to form an incompletely closed acid-etched fracture as the flow channel for oil and gas during production.The length and conductivity of acid-etched fractures can be used to evaluate acid fracturing and directly impact production.To study their influence on the stimulation effect and final production,an acid fracturing coupling model including a fracture propagation model coupled with reservoir flow and temperature field models is established for the first time in this study based on an embedded discrete fracture model(EDFM),which can realize the coupling of fracture propagation and reservoir flow and simplify the solution of fracture and reservoir temperatures.The simulation results of the acid fracturing coupling model are introduced into the productivity model,which is also based on the EDFM to analyze and evaluate well productivity.The results show that:(1)the EDFM can easily couple fracture propagation and reservoir flow and can be used to rapidly solve the temperature fields in the fracture and reservoir successfully for the first time.(2)Reservoir flow impacts the propagation of fractures by increasing or decreasing the leak-off velocity of the working fluid.(3)Temperature diffusion is much weaker than pressure diffusion during acid fracturing and is limited near the acid fracture.The reaction between the acid and rock increases the local temperature around the acid fracture,and may even exceed the initial formation temperature.(4)Raising the injection rate reasonably enhances H^(+) diffusion,increases the effective length of acid-etched fractures,enlarges the drainage area of oil and gas,and benefits long-term well production. 展开更多
关键词 Acid fracturing fracture conductivity Carbonate reservoir Temperature field Embedded discrete fracture model
暂未订购
PROGRESSIVE FRACTURE MODELING OF THE FAILURE WAVE IN IMPACTED GLASS
9
作者 Yao Guowen Liu Zhanfang Huang Peiyan 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期69-74,共6页
The failure wave has been observed propagating in glass under impact loading since 1991. It is a continuous fracture zone which may be associated with the damage accumulation process during the propagation of shock wa... The failure wave has been observed propagating in glass under impact loading since 1991. It is a continuous fracture zone which may be associated with the damage accumulation process during the propagation of shock waves. A progressive fracture model was proposed to describe the failure wave formation and propagation in shocked glass considering its heterogeneous meso-structures. The original and. nucleated microcracks will expand along the pores and other defects with concomitant dilation when shock loading is below the Hugoniot Elastic Limit. The governing equation of the failure wave is characterized by inelastic bulk strain with material damage and fracture. And the inelastic bulk strain consists of dilatant strain from nucleation and expansion of microcracks and condensed strain from the collapse of the original pores. Numerical simulation of the free surface velocity was performed and found in good agreement with planar impact experiments on K9 glass at China Academy of Engineering Physics. And the longitudinal, lateral and shear stress histories upon the arrival of the failure wave were predicted, which present the diminished shear strength and lost spall strength in the failed layer. 展开更多
关键词 the failure wave progressive fracture model GLASS planar impact
在线阅读 下载PDF
Finite Element Convergence for State-Based Peridynamic Fracture Models
10
作者 Prashant K.Jha Robert Lipton 《Communications on Applied Mathematics and Computation》 2020年第1期93-128,共36页
We establish the a priori convergence rate for finite element approximations of a class of nonlocal nonlinear fracture models.We consider state-based peridynamic models where the force at a material point is due to bo... We establish the a priori convergence rate for finite element approximations of a class of nonlocal nonlinear fracture models.We consider state-based peridynamic models where the force at a material point is due to both the strain between two points and the change in volume inside the domain of the nonlocal interaction.The pairwise interactions between points are mediated by a bond potential of multi-well type while multi-point interactions are associated with the volume change mediated by a hydrostatic strain potential.The hydrostatic potential can either be a quadratic function,delivering a linear force–strain relation,or a multi-well type that can be associated with the material degradation and cavitation.We first show the well-posedness of the peridynamic formulation and that peridynamic evolutions exist in the Sobolev space H2.We show that the finite element approximations converge to the H2 solutions uniformly as measured in the mean square norm.For linear continuous fi nite elements,the convergence rate is shown to be Ct Δt+Csh2/ε2,where𝜖is the size of the horizon,his the mesh size,and Δt is the size of the time step.The constants Ct and Cs are independent of Δt and h and may depend on ε through the norm of the exact solution.We demonstrate the stability of the semi-discrete approximation.The stability of the fully discrete approximation is shown for the linearized peridynamic force.We present numerical simulations with the dynamic crack propagation that support the theoretical convergence rate. 展开更多
关键词 Nonlocal fracture models Peridynamic State-based peridynamic Numerical analysis Finite element approximation
在线阅读 下载PDF
Thermal-hydraulic-mechanical-chemical coupling analysis of enhanced geothermal systems based on an embedded discrete fracture model
11
作者 Dongxu Han Weitao Zhang +4 位作者 Kaituo Jiao Bo Yu Tingyu Li Liang Gong Shurong Wang 《Natural Gas Industry B》 2023年第5期533-546,共14页
Enhanced geothermal system(EGS)is subject to the comprehensive effects of multiple physicalfields during the long-term heat extraction process,including hydraulic(H),thermal(T),mechanical(M)and chemical(C)fields.The e... Enhanced geothermal system(EGS)is subject to the comprehensive effects of multiple physicalfields during the long-term heat extraction process,including hydraulic(H),thermal(T),mechanical(M)and chemical(C)fields.The embedded discrete fracture model(EDFM)can effectively simulate the variations offlow,temperature,mechanical and concentrationfields in fractured reservoirs.At present,however,the thermo-hydro-mechanical-chemical(THMC)coupling model based on EDFM is less researched.In this paper,the THMC coupling model of fractured reservoir is established based on EDFM by considering the changes in reservoir heterogeneity and physical properties as well as watererock reactions.Then,the spatiotemporal evolution offlow,temperature,displacement and concentrationfields in the operation process of EGS is simulated and analyzed.And the following research results are obtained.First,when the permeability of the basement rock is low,the production temperature decrease during exploitation is gradual,allowing EGS to maintain a high exploitation temperature for an extended period.However,lower permeability may result in a decrease in the qualityflow rate from production wells,thereby affecting net heat extraction power.Second,when fracture permeability or fracture opening changes,EGS can output higher temperature stably for a certain period and then the temperature decreases at different amplitudes.When the fracture permeability increases to a certain value or the fracture opening decreases to a certain value,the influence of the change in fracture parameters on production temperature gets weak.Third,After 40 years of EGS operation,considering variable propertyfluids results in a 22 C lower exploitation temperature compared to using constant propertyfluids,and considering watererock reactions results in a 15 C lower exploitation temperature,with a 12.5%increase in reservoir average porosity.In conclusion,when researching a long-term operating EGS,it is necessary to comprehensively consider the influences of reservoir rock parameters,physical properties of injectedfluid,watererock reaction and other factors.And in the future,attention shall be paid to the two-way coupling of chemical reaction and mechanical deformation of other mineral compositions in the reservoir to the hydro-thermo-chemicalfield influence,so as to provide more accurate and reliable prediction for the engineering development and utilization of EGS reservoirs. 展开更多
关键词 Enhanced geothermal system Embedded discrete fracture model THMC coupling model fractured reservoir Water-rock reaction Heat extraction Influencing factor Numerical simulation
在线阅读 下载PDF
A multi-mechanism numerical simulation model for CO_(2)-EOR and storage in fractured shale oil reservoirs 被引量:2
12
作者 Yuan-Zheng Wang Ren-Yi Cao +3 位作者 Zhi-Hao Jia Bin-Yu Wang Ming Ma Lin-Song Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1814-1828,共15页
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ... Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs. 展开更多
关键词 CO_(2)-EOR CO_(2)storage Shale oil reservoir Complex fracture model Multiple mechanisms
原文传递
Effect of proppant sizes and injection modes on proppant transportation and distribution in the tortuous fracture model 被引量:1
13
作者 Jun Li Xu Han +3 位作者 Siyuan He Mingyi Wu Xin Huang Nianyin Li 《Particuology》 SCIE EI CAS CSCD 2024年第1期261-280,共20页
Particle-fluid transport and placement mechanism in tortuous fracture played a crucial role in uncon-ventional reservoirs.Currently,most studies focused on mono-size proppant with fluid transport pro-cesses in tortuou... Particle-fluid transport and placement mechanism in tortuous fracture played a crucial role in uncon-ventional reservoirs.Currently,most studies focused on mono-size proppant with fluid transport pro-cesses in tortuous fractures.However,the mixture-size proppant with fluid movement mechanism in tortuous fracture was still uncommon.Therefore,this study designed and applied a series of experiments with a physical analog model of a tortuous fracture with 120°and 90°-angled bends and combined high-speed camera-based equipment.This experimental system was used to track different-mixture-sized proppant particle motion trajectories for a series of proppant injection schemes;The following conclu-sions were drawn from this study:1.The pile-up processes mechanism in all investigated schemes were similar and could be reduced to four main stages.2.The packing structure at both sides of the fracture wall had different variation rates,which were controlled by the mix ratio(change from 1∶1-1∶5)of proppant size.3.Some new packing patterns,such as Zebra Stripe,had occurred,controlled by the different proppant injection sequences.4.Small-sized mono-proppant(30/50 mesh)had the highest transport efficiency in the tortuous fracture,followed by the mixed-sized multi-proppant(10/20 mesh:30/50 mesh),large-sized proppant(10/20 mesh)was the worst.5.An optimized alternating in-jection mode was recommended as injecting small-sized proppant first(30/50 mesh)and followed by mixed-sized multi-proppant(10/20 mesh:30/50 mesh),which could contribute to obtaining the optimal both proppant packing height and travel distance in tortuous fracture.6.Two correlations were devel-oped for predicting the proppant packing height and transportation distance. 展开更多
关键词 Tortuous fracture model Mixed-sized proppant Multi-sized proppant injection mode Proppant motion and distribution Packing mechanism
原文传递
Effect of Spatial Variability in the Geometry of Fractures on Granite Slope Stability
14
作者 Lin Jia Jing-Sen Cai +3 位作者 Li Wu Tian-Chyi Jim Yeh E-Chuan Yan Yi Du 《Journal of Earth Science》 2025年第5期1923-1935,共13页
A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard d... A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard deviationσ)of the geometric properties(i.e.,the fracture dip D,the trace length T and the spacing S)of both the gently-dipping(denoted with 1)and the steeply-dipping(denoted with 2)fractures on the stability of granite slope are investigated.Results indicate that the proposed DFN-DEC method is robust,generating fracture networks that resemble reality.In addition,the spatial variability of fracture geometry,influencing the structure of granite slope,plays a significant role in slope stability.The mean stability of the slope decreases with the increase ofμ_(D_(1))(the mean of gently-dipping fracture dip),σ_(D_(2))(the mean of steeply-dipping fracture dip),μ_(T_(1))(the mean of gently-dipping fracture trace length),μ_(T_(2))(the mean of steeply-dipping fracture trace length),σ_(T_(1))(the standard deviation of gently-dipping fracture trace length),σ_(T_(2))(the standard deviation of steeply-dipping fracture trace length),and the decrease ofσ_(D_(1))(the standard deviation of gently-dipping fracture dip),μ_(D_(2))(the standard deviation of steeply-dipping fracture dip),μ_(S_(1))(the mean of gently-dipping fracture spacing)andμ_(S_(2))(the mean of steeply-dipping fracture spacing).Among them,μ_(T_(1)),μ_(D_(1))andμ_(S_(1))have the major impact.When the fracture spacing is large,the variability in the fracture geometry becomes less relevant to slope stability.When within some ranges of the fracture spacing,the spatial varying of dips can increase the slope stability by forming an interlaced structure.The results also show that the effects of the variability of trace length on slope stability depend on the variability of dip.These findings highlight the importance of spatial variability in the geometry of fractures to rock slope stability analysis. 展开更多
关键词 slope stability spatial variability geometry of fractures steep-gentle combined fracture model DFN-DEC method engineering geology
原文传递
Studying mechanism of anisotropic crack generation on C-,R-,A-,and M-planes of sapphire during ultra-precision orthogonal cutting using a visualized slip/fracture activation model
15
作者 Suk Bum Kwon Sangkee Min 《Nanotechnology and Precision Engineering》 CSCD 2024年第4期47-64,共18页
With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal ... With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal sapphire stands out as a promising material for microelectronic components,ultra-precision lenses,and semiconductor structures owing to its exceptional characteristics,such as high hardness,chemical stability,and optical properties.This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes(C-,R-,A-,and M-planes)of sapphire during ultra-precision orthogonal cutting.By employing a scanning electric microscope to examine the machined surfaces,the crack morphologies can be categorized into three distinct types on the basis of their distinctive features:layered,sculptured,and lateral.To understand the mechanism determining crack morphology,visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized.These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations.Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations. 展开更多
关键词 Anisotropic behavior Crack morphology Slip/fracture activation model Single-crystal sapphire Ultra-precision machining
在线阅读 下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
16
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model Geometric algorithm fracture flow Water-sealing effect
在线阅读 下载PDF
Multiscale anisotropic fracturing model of hard rock based on the competitive process of crack propagation
17
作者 Chen Fan Xiating Feng +2 位作者 Jun Zhao Chengxiang Yang Mengfei Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4952-4965,共14页
During the excavation of deep engineering,high in situ stress is one prominent feature that often causes instability in the vicinity of underground openings.The propagation and coalescence of cracks in the surrounding... During the excavation of deep engineering,high in situ stress is one prominent feature that often causes instability in the vicinity of underground openings.The propagation and coalescence of cracks in the surrounding rock are characterized by anisotropy under a true triaxial stress state and play a crucial role in the development of stress-induced engineering disasters.Thus,a three-dimensional anisotropic fracturing model of hard rock is proposed to interpret fracturing activities and evaluate the mechanical property deterioration under complex stress conditions.This anisotropic fracturing model is derived from the evolution of microcracks and attributes the inelastic deformation of hard rock to crack propagation and coalescence.Through analyzing the competitive process of crack propagation in different orientations,the stress-induced anisotropic fracturing characteristics and the post-peak brittle-ductile transition could be revealed.Finally,the accuracy and effectiveness of this model are validated.Results show that this proposed anisotropic fracturing model can elucidate the primary characteristics observed in triaxial compression tests,which offers a fresh perspective on comprehending the failure process of hard rock. 展开更多
关键词 Anisotropic fracturing model True triaxial stress Competitive process Microcrack propagation and coalescence Post-peak brittle-ductile transition
在线阅读 下载PDF
High-temperature fracture behavior of Ti−22Al−26Nb with different featured microstructures
18
作者 Yong-qiang ZHANG Ke-min XUE +2 位作者 Miao MENG Si-liang YAN Ping LI 《Transactions of Nonferrous Metals Society of China》 2025年第4期1155-1167,共13页
The fracture behavior at high temperatures of the Ti−22Al−26Nb alloy,which features duplex lamellar,bimodal,and Widmanstätten structures,was studied.Samples of the alloy were prepared through compression deformat... The fracture behavior at high temperatures of the Ti−22Al−26Nb alloy,which features duplex lamellar,bimodal,and Widmanstätten structures,was studied.Samples of the alloy were prepared through compression deformation in the trans-phase region followed by subsequent heat treatment.The results indicate that at 650℃,the fracture toughness of the Ti−22Al−26Nb alloy is increased by 41.7%compared to that with original microstructures.The content of the B2 phase significantly influences the inherent fracture toughness of the material,while the morphology and distribution of the precipitated phases primarily affect the tortuosity of the crack propagation path.Among the microstructural features,the morphology and geometric orientation of the lamellae most significantly impact the crack path;consequently,the Widmanstätten structure exhibits the most tortuous fracture path.Additionally,a predictive model for fracture toughness is developed,which effectively predicts the fracture toughness of Ti−22Al−26Nb alloys with various microstructures at 650℃. 展开更多
关键词 Ti_(2)AlNb-based alloy featured microstructures fracture toughness prediction model fracture mechanics
在线阅读 下载PDF
A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model 被引量:2
19
作者 WEI Yunsheng WANG Junlei +4 位作者 YU Wei QI Yadong MIAO Jijun YUAN He LIU Chuxi 《Petroleum Exploration and Development》 CSCD 2021年第4期911-922,共12页
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz... The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility. 展开更多
关键词 fractal discrete fracture network multiplicative cascade process embedded discrete fracture model intelligent history matching reservoir parameter inversion shale gas smart productivity evaluation
在线阅读 下载PDF
Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites 被引量:1
20
作者 Yang SHEN Pengfei HE Xiaoying ZHUANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期125-136,共12页
In this paper, we propose a 3D stochastic model to predict the percolation threshold and the effective electric conductivity of CNTs/Polymer composites. We consider the tunneling effect in our model so that the unreal... In this paper, we propose a 3D stochastic model to predict the percolation threshold and the effective electric conductivity of CNTs/Polymer composites. We consider the tunneling effect in our model so that the unrealistic interpenetration can be avoided in the identification of the conductive paths between the CNTs inside the polymer. The results are shown to be in good agreement with reported experimental data. 展开更多
关键词 electrical percolation CNTs/Polymer composites fracture model electric conductivity tunnelling effects
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部