期刊文献+
共找到26,252篇文章
< 1 2 250 >
每页显示 20 50 100
Creep constitutive model for damaged soft rock based on fractional-order nonlinear theory 被引量:1
1
作者 BAO Min ZHOU Zihan +1 位作者 CHEN Zhonghui ZHANG Lingfei 《Journal of Mountain Science》 2025年第6期2276-2290,共15页
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s... Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models. 展开更多
关键词 Mining damage Creep damage fractional-order Constitutive model Secondary development
原文传递
Full waveform inversion with fractional anisotropic total p-variation regularization
2
作者 Bo Li Xiao-Tao Wen +2 位作者 Yu-Qiang Zhang Zi-Yu Qin Zhi-Di An 《Petroleum Science》 2025年第8期3266-3278,共13页
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ... Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process. 展开更多
关键词 Full waveform inversion Anisotropic total p-variation fractional-order differences Sparse regularization
原文传递
Size-dependent bending and vibration analysis of piezoelectric nanobeam based on fractional-order kinematic relations
3
作者 Zhiwen FAN Hai QING 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1261-1272,I0003-I0011,共21页
In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli pie... In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems. 展开更多
关键词 scale effect Riesz-Caputo fractional-order derivative Euler-Bernoulli piezoelectric beam fractional-order¯nite element method(FEM)
在线阅读 下载PDF
Effects of potential field delay and coupling delay on collective behavior of a fractional-order coupled system in a dichotomous fluctuating potential
4
作者 Yangfan Zhong Xi Chen +1 位作者 Maokang Luo Tao Yu 《Chinese Physics B》 2025年第5期270-287,共18页
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ... The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies. 展开更多
关键词 potential field delay coupling delay fractional-order collective behavior
原文传递
Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization
5
作者 Qian Zhu Qian Kang +2 位作者 Tao Xu Dengxiu Yu Zhen Wang 《Computers, Materials & Continua》 2025年第5期1855-1879,共25页
In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/... In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training. 展开更多
关键词 Gated recurrent unit regularization convergence
在线阅读 下载PDF
Absorption compensation via structure tensor regularization multichannel inversion
6
作者 Liang Bing Zhao Dong-feng +4 位作者 Xia Lian-jun Tang Guo-song Luo Zhen Guan Wen-hua Wang Xue-jing 《Applied Geophysics》 2025年第3期635-646,892,893,共14页
Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis... Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method. 展开更多
关键词 Absorption compensation Structure tensor RESOLUTION Signal-to-noise ratio regularization
在线阅读 下载PDF
Gamma-ray spectral energy resolution calibration based on locally constrained regularization for scintillation detector response:methodology,numerical,and experimental analysis
7
作者 Guo-Feng Yang Wen-Zheng Peng +3 位作者 Dong-Ming Liu Xiao-Long Wu Meng Chen Xiang-Jun Liu 《Nuclear Science and Techniques》 2025年第4期92-104,共13页
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para... Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking. 展开更多
关键词 Energy resolution regularization Gaussian broadening Spectral analysis Scintillation detector
在线阅读 下载PDF
Robust visual tracking using temporal regularization correlation filter with high-confidence strategy
8
作者 Xiao-Gang Dong Ke-Xuan Li +2 位作者 Hong-Xia Mao Chen Hu Tian Pu 《Journal of Electronic Science and Technology》 2025年第2期81-96,共16页
Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking ro... Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance. 展开更多
关键词 Appearance changes Correlation filter High-confidence strategy Temporal regularization Visual tracking
在线阅读 下载PDF
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
9
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization Wavelet thresholding method
在线阅读 下载PDF
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization 被引量:1
10
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 CLUSTERING Multi-View Subspace Clustering Low-Rank Prior Sparse regularization
在线阅读 下载PDF
Novel Model of Proton Exchange Membrane Fuel Cell with Predictive Control Using Hildreth Algorithm Based on Fractional-order Dynamic Model
11
作者 Chu Kaihui Qi Zhidong +1 位作者 Qin Hao Shan Liang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期122-135,共14页
Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fracti... Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fractionalorder state space(FOSS)model,which can be expressed as a multivariable configuration with two inputs,hydrogenflow rate and stack current,and two outputs,cell voltage and power.Based on this model,a novel constrained optimal control law named the Hildreth model predictive control(H-MPC)strategy is created,which employs a Hildreth quadratic programming algorithm to adjust the output power of fuel cells through adaptively regulating hydrogen flow and stack current.dSPACE semi-physical simulation results demonstrate that,compared with proportional-integral-derivative and quadratic programming MPC(QP-MPC),the proposed H-MPC exhibits better tracking ability and strong robustness against variations of PEMFC power. 展开更多
关键词 PEMFC fractional-order subspace identification method fractional-order state space H-MPC
在线阅读 下载PDF
Electrical characteristics of a fractional-order 3×n Fan network
12
作者 Zhi-Zhong Tan Xin Wang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第4期176-187,共12页
In this article a new achievement of fractional-order 3×n Fan networks is presented.In the first step,the RT-I method is used to derive the general formulae of the equivalent impedance of fractional-order 3×... In this article a new achievement of fractional-order 3×n Fan networks is presented.In the first step,the RT-I method is used to derive the general formulae of the equivalent impedance of fractional-order 3×n Fan networks.In the second part,the effects of five system parameters(L,C,n,α and β)on amplitude-frequency and phase-frequency characteristics are analyzed.At the same time,the amplitude-frequency and phase-frequency characteristics of the fractional order 3×n Fan network are revealed by Matlab drawing.This work has important theoretical and practical significance for resistor network models in the field of natural science and engineering technology. 展开更多
关键词 fractional-order circuit amplitude-frequency characteristics phase-frequency characteristics RT-V theory
原文传递
True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization
13
作者 Mei Liang Zhuo Sun +3 位作者 Jiasong Liu Yongsheng Wang Lei Liang Long Zhang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期55-62,共8页
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order... Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values. 展开更多
关键词 fractional-order particle swarm True-temperature inversion algorithm Multi-wavelength pyrometer
在线阅读 下载PDF
Efficient anti-aliasing and anti-leakage Fourier transform for high-dimensional seismic data regularization using cube removal and GPU
14
作者 Lu Liu Sindi Ghada +3 位作者 Fu-Hao Qin Youngseo Kim Vladimir Aleksic Hong-Wei Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3079-3089,共11页
Seismic data is commonly acquired sparsely and irregularly, which necessitates the regularization of seismic data with anti-aliasing and anti-leakage methods during seismic data processing. We propose a novel method o... Seismic data is commonly acquired sparsely and irregularly, which necessitates the regularization of seismic data with anti-aliasing and anti-leakage methods during seismic data processing. We propose a novel method of 4D anti-aliasing and anti-leakage Fourier transform using a cube-removal strategy to address the combination of irregular sampling and aliasing in high-dimensional seismic data. We compute a weighting function by stacking the spectrum along the radial lines, apply this function to suppress the aliasing energy, and then iteratively pick the dominant amplitude cube to construct the Fourier spectrum. The proposed method is very efficient due to a cube removal strategy for accelerating the convergence of Fourier reconstruction and a well-designed parallel architecture using CPU/GPU collaborative computing. To better fill the acquisition holes from 5D seismic data and meanwhile considering the GPU memory limitation, we developed the anti-aliasing and anti-leakage Fourier transform method in 4D with the remaining spatial dimension looped. The entire workflow is composed of three steps: data splitting, 4D regularization, and data merging. Numerical tests on both synthetic and field data examples demonstrate the high efficiency and effectiveness of our approach. 展开更多
关键词 High-dimensional regularization GPU ANTI-ALIASING ANTI-LEAKAGE
原文传递
Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
15
作者 Weiguo Huang Jun Wang +2 位作者 Guifu Du Shuyou Wu Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期258-271,共14页
As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gea... As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method. 展开更多
关键词 Gearbox fault diagnosis Balance model Sparse decomposition Non-convex regularization
在线阅读 下载PDF
Joint input–output identification of unstable systems with kernel regularization
16
作者 Yusuke Fujimoto Toshiharu Sugie 《Control Theory and Technology》 EI CSCD 2024年第2期195-202,共8页
This paper discusses closed-loop identification of unstable systems.In particular,wefirst apply the joint input–output identification method and then convert the identification problem of unstable systems into that of st... This paper discusses closed-loop identification of unstable systems.In particular,wefirst apply the joint input–output identification method and then convert the identification problem of unstable systems into that of stable systems,which can be tackled by using kernel-based regularization methods.We propose to identify two transfer functions by kernel regularization,the one from the reference signal to the input,and the one from the reference signal to the output.Since these transfer functions are stable,kernel regularization methods can construct their accurate models.Then the model of unstable system is constructed by ratio of these functions.The effectiveness of the proposed method is demonstrated by a numerical example and a practical experiment with a DC motor. 展开更多
关键词 Closed-loop identification Kernel regularization Joint input-output identification
原文传递
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
17
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 regularization Logistic Regression Model K-Means Clustering Analysis Elbow Rule Parameter Verification
在线阅读 下载PDF
Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid
18
作者 Aadel M.Alatwi Abualkasim Bakeer +3 位作者 Sherif A.Zaid Ibrahem E.Atawi Hani Albalawi Ahmed M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1807-1830,共24页
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe... An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES. 展开更多
关键词 fractional-order proportional integral(FOPI) intelligent controller renewable energy resources superconducting magnetic energy storage OPTIMIZATION
在线阅读 下载PDF
A Modified Tikhonov Regularization Method for a Cauchy Problem of the Biharmonic Equation
19
作者 Fan YANG Jianming XU Xiaoxiao LI 《Journal of Mathematical Research with Applications》 CSCD 2024年第3期359-386,共28页
In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under... In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under the a priori bound assumption for the exact solution.Secondly,a modified Tikhonov regularization method is used to solve this ill-posed problem.Under the a priori and the a posteriori regularization parameter choice rule,the error estimates between the regularization solutions and the exact solution are obtained.Finally,some numerical examples are presented to verify that our method is effective. 展开更多
关键词 Biharmonic equations inverse problem Cauchy problem Tikhonov regularization method
原文传递
Convergent Data-Driven Regularizations for CT Reconstruction
20
作者 Samira Kabri Alexander Auras +4 位作者 Danilo Riccio Hartmut Bauermeister Martin Benning Michael Moeller Martin Burger 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1342-1368,共27页
The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solutio... The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solution does not depend on the measured data continuously,regularization is needed to reestablish a continuous dependence.In this work,we investigate simple,but yet still provably convergent approaches to learning linear regularization methods from data.More specifically,we analyze two approaches:one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work,and one tailored approach in the Fourier domain that is specific to CT-reconstruction.We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on.Finally,we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically,discuss their advantages and disadvantages and investigate the effect of discretization errors at differentresolutions. 展开更多
关键词 Inverse problems regularization Computerized tomography(CT) Machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部