期刊文献+
共找到242篇文章
< 1 2 13 >
每页显示 20 50 100
Size-dependent bending and vibration analysis of piezoelectric nanobeam based on fractional-order kinematic relations
1
作者 Zhiwen FAN Hai QING 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1261-1272,I0003-I0011,共21页
In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli pie... In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems. 展开更多
关键词 scale effect Riesz-Caputo fractional-order derivative Euler-Bernoulli piezoelectric beam fractional-order¯nite element method(FEM)
在线阅读 下载PDF
Creep constitutive model for damaged soft rock based on fractional-order nonlinear theory 被引量:1
2
作者 BAO Min ZHOU Zihan +1 位作者 CHEN Zhonghui ZHANG Lingfei 《Journal of Mountain Science》 2025年第6期2276-2290,共15页
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s... Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models. 展开更多
关键词 Mining damage Creep damage fractional-order Constitutive model Secondary development
原文传递
Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission
3
作者 Lamia Chouchane Hamid Hamiche +2 位作者 Karim Kemih Ouerdia Megherbi Karim Labadi 《Chinese Physics B》 2025年第12期174-191,共18页
The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor no... The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor noise resistance.To overcome these issues,a novel fractional-order chaotic system incorporating a memristor emulator derived from the Shinriki oscillator is proposed.The main contribution lies in the enhanced dynamic complexity and flexibility of the proposed architecture,making it suitable for cryptographic applications.Furthermore,the feasibility of synchronization to ensure secure data transmission is demonstrated through the validation of two strategies:an active control method ensuring asymptotic convergence,and a finite-time control method enabling faster stabilization.The robustness of the scheme is confirmed by simulation results on a color image:χ^(2)=253/237/267(R/G/B);entropy≈7.993;correlations between adjacent pixels in all directions are close to zero(e.g.,-0.0318 vertically);and high number of pixel change rate and unified average changing intensity(e.g.,33.40%and 99.61%,respectively).Peak signal-to-noise ratio analysis shows that resilience to noise and external disturbances is maintained.It is shown that multiple fractional orders further enrich the chaotic behavior,increasing the systems suitability for secure communication in embedded environments.These findings highlight the relevance of fractional-order chaotic memristive systems for lightweight secure transmission applications. 展开更多
关键词 MEMRISTOR fractional-order chaotic system SYNCHRONIZATION finite-time control active control CRYPTOGRAPHY secure communications
原文传递
Effects of potential field delay and coupling delay on collective behavior of a fractional-order coupled system in a dichotomous fluctuating potential
4
作者 Yangfan Zhong Xi Chen +1 位作者 Maokang Luo Tao Yu 《Chinese Physics B》 2025年第5期270-287,共18页
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ... The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies. 展开更多
关键词 potential field delay coupling delay fractional-order collective behavior
原文传递
Enhanced Fractional-Order Nonsingular Terminal Sliding Mode Control for Fully Submerged Hydrofoil Craft with Actuator Saturation
5
作者 Hongmin Niu Shiquan Zhao +1 位作者 Cristina IMuresan Clara Mihaela Ionescu 《哈尔滨工程大学学报(英文版)》 2025年第6期1264-1278,共15页
This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncer... This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncertainties,and actuator saturation.A novel nonlinear disturbance observer modified by fractional-order calculus is proposed for flexible and less conservative estimation of lumped disturbances.An enhanced adaptive fractional-order nonsingular sliding mode scheme augmented by disturbance estimation is also introduced to improve disturbance rejection.This controller design only necessitates surpassing the estimation error rather than adhering strictly to the disturbance upper bound.Additionally,an adaptive fast-reaching law with a hyperbolic tangent function is incorporated to enhance the responsiveness and convergence rates of the controller,thereby reducing chattering.Furthermore,an auxiliary actuator compensator is developed to address saturation effects.The resultant closed system of the FSHC with the designed controller is globally asymptotically stable. 展开更多
关键词 Fully submerged hydrofoil craft Longitudinal motion control fractional-order terminal sliding mode control Disturbance observer Saturation compensation
在线阅读 下载PDF
External stability of fractional-order control systems 被引量:2
6
作者 曾庆山 曹广益 朱新坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第1期32-36,共5页
The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. I... The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. In terms of Lyapunov’s stability theory and the stability analysis of the integer-order linear control systems, the definitions of external stability for fractional-order control systems are presented. By using the theorems of the Mittag-Leffler function in two parameters, the necessary and sufficient conditions of external stability are directly derived. The illustrative examples and simulation results are also given. 展开更多
关键词 fractional calculus fractional-order system fractional-order state space representation fractional-order transfer function external stability
在线阅读 下载PDF
Circuit implementation of a new hyperchaos in fractional-order system 被引量:12
7
作者 刘崇新 刘凌 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2829-2836,共8页
This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then in... This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6. 展开更多
关键词 hyperchaotic system fractional-order system integer-order chaotic circuit fractional-order circuit
原文传递
Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems 被引量:3
8
作者 周平 曹玉霞 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期163-166,共4页
This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projectiv... This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme. 展开更多
关键词 fractional-order chaotic systems chaotic systems of integer orders function projectivesynchronization stability theory of fractional-order systems
原文传递
A modified fractional-order thermo-viscoelastic model and its application to a polymer micro-rod heated by a moving heat source 被引量:1
9
作者 Wei PENG Like CHEN Tianhu HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第4期507-522,共16页
Classical thermo-viscoelastic models may be challenged to predict the precise thermo-mechanical behavior of viscoelastic materials without considering the memorydependent effect.Meanwhile,with the miniaturization of d... Classical thermo-viscoelastic models may be challenged to predict the precise thermo-mechanical behavior of viscoelastic materials without considering the memorydependent effect.Meanwhile,with the miniaturization of devices,the size-dependent effect on elastic deformation is becoming more and more important.To capture the memory-dependent effect and the size-dependent effect,the present study aims at developing a modified fractional-order thermo-viscoelastic coupling model at the microscale to account for two fundamentally distinct fractional-order models which govern the memory-dependent features of thermal conduction and stress-strain relation,respectively.Then,the modified theory is used to study the dynamic response of a polymer micro-rod heated by a moving heat source.The governing equations are obtained and solved by the Laplace transform method.In calculation,the effects of the fractional-order parameter,the fractional-order strain parameter,the mechanical relaxation parameter,and the nonlocal parameter on the variations of the considered variables are analyzed and discussed in detail. 展开更多
关键词 size-dependent effect fractional-order strain fractional-order thermal conduction generalized thermo-viscoelasticity moving heat source
在线阅读 下载PDF
Adaptive fuzzy synchronization for a class of fractional-order neural networks 被引量:1
10
作者 刘恒 李生刚 +1 位作者 王宏兴 李冠军 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期258-267,共10页
In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as sync... In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method. 展开更多
关键词 fractional-order neural network adaptive fuzzy control fractional-order adaptation law
原文传递
Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system 被引量:1
11
作者 杨宁宁 韩宇超 +2 位作者 吴朝俊 贾嵘 刘崇新 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期74-86,共13页
Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. T... Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage. 展开更多
关键词 fractional-order ferroresonance system fractional-order sliding mode control adaptive control nonlinear circuit emulator
原文传递
Analysis of the effect on control systems of order variation for fractional-orderPI~λD~μcontrollers 被引量:1
12
作者 曾庆山 曹广益 朱新坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期336-341,共6页
This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-o... This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-order control systems are outlined. The effects on control systems of order variation for fractional-order PI~λD~μ controllers are investigated by qualitative analysis and simulation. The conclusions and simulation examples are given. The results show the fractional-order PI~λD~μ controller is not sensitive to variation of its order. 展开更多
关键词 fractional calculus fractional-order control systems fractional-order PI~λD~μ controller characteristic polynomial
在线阅读 下载PDF
Novel Model of Proton Exchange Membrane Fuel Cell with Predictive Control Using Hildreth Algorithm Based on Fractional-order Dynamic Model
13
作者 Chu Kaihui Qi Zhidong +1 位作者 Qin Hao Shan Liang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期122-135,共14页
Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fracti... Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fractionalorder state space(FOSS)model,which can be expressed as a multivariable configuration with two inputs,hydrogenflow rate and stack current,and two outputs,cell voltage and power.Based on this model,a novel constrained optimal control law named the Hildreth model predictive control(H-MPC)strategy is created,which employs a Hildreth quadratic programming algorithm to adjust the output power of fuel cells through adaptively regulating hydrogen flow and stack current.dSPACE semi-physical simulation results demonstrate that,compared with proportional-integral-derivative and quadratic programming MPC(QP-MPC),the proposed H-MPC exhibits better tracking ability and strong robustness against variations of PEMFC power. 展开更多
关键词 PEMFC fractional-order subspace identification method fractional-order state space H-MPC
在线阅读 下载PDF
Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization 被引量:43
14
作者 卢俊国 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期301-305,共5页
In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The low... In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied. 展开更多
关键词 CHAOS Ikeda delay system fractional-order system fractional calculus
原文传递
Chaotic synchronization for a class of fractional-order chaotic systems 被引量:15
15
作者 周平 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第5期1263-1266,共4页
In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-or... In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous. 展开更多
关键词 SYNCHRONIZATION fractional-order chaotic systems stability theory
原文传递
Hypersonic reentry trajectory planning by using hybrid fractional-order particle swarm optimization and gravitational search algorithm 被引量:10
16
作者 Khurram SHAHZAD SANA Weiduo HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期50-67,共18页
This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry fligh... This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency. 展开更多
关键词 fractional-order Gravitational search algorithm Particle swarm optimization Reentry gliding vehicle Trajectory optimization
原文传递
Robust Admissibility and Stabilization of Uncertain Singular Fractional-Order Linear Time-Invariant Systems 被引量:6
17
作者 Saliha Marir Mohammed Chadli 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期685-692,共8页
This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict... This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods. 展开更多
关键词 CONTROL fractional-order SYSTEMS linear matrix inequalities (LMIs) output feedback CONTROL robust ADMISSIBILITY SINGULAR SYSTEMS UNCERTAIN SYSTEMS
在线阅读 下载PDF
Improved quantum bacterial foraging algorithm for tuning parameters of fractional-order PID controller 被引量:9
18
作者 LIU Lu SHAN Liang +2 位作者 DAI Yuewei LIU Chenglin QI Zhidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期166-175,共10页
The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is... The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system. 展开更多
关键词 bacterial foraging algorithm fractional-order quantum rotation gate proportion integration differentiation(PID) servo system
在线阅读 下载PDF
Fractional-order permanent magnet synchronous motor and its adaptive chaotic control 被引量:9
19
作者 李春来 禹思敏 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期168-173,共6页
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a... In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system. 展开更多
关键词 fractional-order permanent magnet synchronous motor adaptive chaotic control
原文传递
Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems 被引量:7
20
作者 贾立新 戴浩 惠萌 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期194-199,共6页
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac... This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method. 展开更多
关键词 chaos synchronisation fractional-order chaotic system nonlinear feedback control numerical differentiation
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部