期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Identification algorithm for a kind of fractional order system 被引量:5
1
作者 王振滨 曹广益 朱新坚 《Journal of Southeast University(English Edition)》 EI CAS 2004年第3期297-302,共6页
The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for tho... The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method. 展开更多
关键词 fractional order systems state-space representation system identification fractional order Poisson filter least square method instrumental variable method
在线阅读 下载PDF
Thermo-viscoelastic dynamic response of nano-plate based on the non-singular kernel fractional order derivatives
2
作者 Lingkang Zhao Peijun Wei Yueqiu Li 《Acta Mechanica Sinica》 2025年第9期167-182,共16页
In this paper,a new temporal-spatial fractional order model is proposed to study the dynamic behavior of thermo-viscoelastic nanoplates.Traditional singular kernel in Caputo fractional order differentiation is replace... In this paper,a new temporal-spatial fractional order model is proposed to study the dynamic behavior of thermo-viscoelastic nanoplates.Traditional singular kernel in Caputo fractional order differentiation is replaced by the non-singular kernel and thus leads to a new generalized fractional order differential model with the integer order differential models as a special case.This improved model can more flexibly describe small-scale mechanical behavior and time-dependent heat conduction behavior and provides a clear physical explanation for the fractional order parameters.Spatial nonlocal effects are described in terms of nonlocal strain gradient elasticity and spatial fractional order derivatives,while the time-dependent effects are described in terms of non-Fourier heat conduction,viscoelasticity,and time fractional order derivatives.In addition,it is the first time that the nonlocal characteristic lengths and the memory characteristic times are introduced as two new small-scale parameters in the fractional order derivatives of non-singular kernels to focus on the short-range nonlocal behaviors and the short-term memory behaviors.Numerical examples of the free vibration and the forced vibration under step loading are given,and the effects of the spatial fractional order parameter and the temporal fractional order parameter are both discussed. 展开更多
关键词 fractional order differential Non-singular kernel Thermo-viscoelastic coupling Laplace transform Dynamic response
原文传递
ADRC FRACTIONAL ORDER PID CONTROLLER DESIGN OF HYPERSONIC FLIGHT VEHICLE 被引量:10
3
作者 秦昌茂 齐乃明 +1 位作者 吕瑞 朱凯 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期240-245,共6页
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i... Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters. 展开更多
关键词 hypersonic flight vehicle active disturbance rejection controller(ADRC) fractional order PID D-decomposition method
在线阅读 下载PDF
A Robust Fractional Order Fuzzy P + Fuzzy I + Fuzzy D Controller for Nonlinear and Uncertain System
4
作者 Vineet Kumar K. P. S. Rana +2 位作者 Jitendra Kumar Puneet Mishra Sreejith S Nair 《International Journal of Automation and computing》 EI CSCD 2017年第4期474-488,共15页
In this paper, a robust fractional order fuzzy P + fuzzy I + fuzzy D (FOFP + FOFI + FOFD) controller is presented for a nonlinear and uncertain 2-1ink planar rigid manipulator. It is a nonlinear fuzzy controller... In this paper, a robust fractional order fuzzy P + fuzzy I + fuzzy D (FOFP + FOFI + FOFD) controller is presented for a nonlinear and uncertain 2-1ink planar rigid manipulator. It is a nonlinear fuzzy controller with variable gains that makes it self- adjustable or adaptive in nature. The fractional order operators further make it more robust by providing additional degrees of freedom to the design engineer. The integer order counterpart, fuzzy P + fuzzy I + fuzzy D (FP + FI + FD) controller, for a comparative study, was realized by taking the integer value for the fractional order operators in FOFP + FOFI + FOFD controller. The performances of both the fuzzy controllers are evaluated for reference trajectory tracking and disturbance rejection with and without model uncertainty and measurement noise. Genetic algorithm was used to optimize the parameters of controller under study for minimum integral of absolute error. Simulation results demonstrated that FOFP + FOFI + FOFD controller show much better performance as compared to its counterpart FP + FI + FD controller in servo as well as the regulatory problem and in model uncertainty and noisy environment FOFP + FOFI + FOFD controller demonstrated more robust behavior as compared to the FP + FI + FD controller. For the developed controller bounded-input and bounded-output stability conditions are also developed using Small Gain Theorem. 展开更多
关键词 Fuzzy P fuzzy I fuzzy D (FP FI FD) controller fractional order fuzzy P fuzzy I fuzzy D (FOFP FOFI+ FOFD) controller fractional order operator robust control model uncertainty noise suppression.
原文传递
Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm 被引量:9
5
作者 XU Fei-xiang LIU Xin-hui +2 位作者 CHEN Wei ZHOU Chen CAO Bing-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2340-2353,共14页
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of... Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness. 展开更多
关键词 steer-by-wire system emergency rescue vehicle fractional order proportional-integral-derivative(FOPID)controller parameter optimization genetic algorithm
在线阅读 下载PDF
Projective synchronization in coupled fractional order chaotic Rossler system and its control 被引量:6
6
作者 邵仕泉 高心 刘兴文 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2612-2615,共4页
This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system... This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system, then a control method based on a partially linear decomposition and negative feedback of state errors is utilized on the new integer order system. Mathematic analyses prove the feasibility and the numerical simulations show the effectiveness of the proposed method. 展开更多
关键词 fractional order chaos synchronization projective synchronization Rossler system
原文传递
A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries 被引量:6
7
作者 Jinpeng Tian Rui Xiong +1 位作者 Weixiang Shen Ju Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期98-112,共15页
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p... State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift. 展开更多
关键词 Electric vehicle Lithium ion battery fractional order model State of charge
在线阅读 下载PDF
Fractional order modeling and control of dissimilar redundant actuating system used in large passenger aircraft 被引量:4
8
作者 Salman IJAZ Lin YAN Mirza Tariq HAMAYUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1141-1152,共12页
In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators.The nonlinear dynamics of both actu... In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators.The nonlinear dynamics of both actuators are first approximated as fractional order models. Based on the identified models, three fractional order controllers are proposed for the whole system. Two Fractional Order PID(FOPID) controllers are dedicated to improving transient response and are designed in a position feedback configuration. In order to synchronize the actuator dynamics, a third fractional order PI controller is designed, which feeds the force compensation signal in position feedback loop of both actuators. Nelder-Mead(N-M) optimization technique is employed in order to optimally tune controller parameters based on the proposed performance criteria. To test the proposed controllers according to real flight condition, an external disturbance of higher amplitude that acts as airload is applied directly on the control surface. In addition, a disturbance signal function of system states is applied to check the robustness of proposed controller. Simulation results on nonlinear system model validated the performance of the proposed scheme as compared to optimal PID and high gain PID controllers. 展开更多
关键词 AEROSPACE fractional order control Model identification Nelder-Mead optimization ROBUSTNESS
原文传递
Projective synchronization of a complex network with different fractional order chaos nodes 被引量:4
9
作者 王明军 王兴元 牛玉军 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期224-228,共5页
Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this... Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme. 展开更多
关键词 fractional order different-structure complex network projective synchronization
原文传递
An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems 被引量:5
10
作者 Jianming Wei Youan Zhang Hu Bao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期618-627,共10页
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens... This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 Index Terms-Adaptive iterative learning control (AILC) boundary layer function composite energy function (CEF) frac-tional order differential learning law fractional order nonlinearsystems Mittag-Leffler function.
在线阅读 下载PDF
DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL 被引量:4
11
作者 Linjie MA Bin LIU 《Acta Mathematica Scientia》 SCIE CSCD 2020年第5期1525-1552,共28页
In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic int... In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior. 展开更多
关键词 fractional order system differential-algebraic system prey-predator bioeconomic model singularity induced bifurcation optimal control
在线阅读 下载PDF
Fractional order integral sliding mode control for PMSM based onfractional order sliding mode observer 被引量:6
12
作者 MIAO Zhong-cui ZHANG Wen-bin +1 位作者 HAN Tian-liang YU Xian-fei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期389-397,共9页
In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)st... In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme. 展开更多
关键词 fractional order calculus sliding mode regulator sliding mode observer sensorless control load observer permanent magnet synchronous motor(PMSM)
在线阅读 下载PDF
The synchronization of a fractional order hyperchaotic system based on passive control 被引量:4
13
作者 吴朝俊 张彦斌 杨宁宁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期100-106,共7页
This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization betw... This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization between two fractional order hyperchaotic systems under different initial conditions is realized, on the basis of the stability theorem for fractional order systems. Numerical simulations and circuitry simulations are presented to verify the analytical results. 展开更多
关键词 fractional order hyperchaos passive control numerical simulation circuitry simulation
原文传递
Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System 被引量:4
14
作者 Amit S.Chopade Swapnil W.Khubalkar +2 位作者 A.S.Junghare M.V.Aware Shantanu Das 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期977-989,共13页
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M... The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance. 展开更多
关键词 Approximation methods digital control dis-cretization fractional calculus fractional order PID controller(FO-PID) magnetic levitation particle swarm optimization(PSO) position control.
在线阅读 下载PDF
CONTROLLABILITY AND OPTIMALITY OF LINEAR TIME-INVARIANT NEUTRAL CONTROL SYSTEMS WITH DIFFERENT FRACTIONAL ORDERS 被引量:3
15
作者 丁小丽 Juan J.NIETO 《Acta Mathematica Scientia》 SCIE CSCD 2015年第5期1003-1013,共11页
Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The ex... Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results. 展开更多
关键词 CONTROLLABILITY OPTIMALITY neutral equations different fractional orders
在线阅读 下载PDF
Modified impulsive synchronization of fractional order hyperchaotic systems 被引量:3
16
作者 浮洁 余淼 马铁东 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期160-166,共7页
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz... In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method. 展开更多
关键词 hyperchaotic systems fractional order chaotic systems SYNCHRONIZATION impulsive control
原文传递
Adaptive digital self-interference cancellation based on fractional order LMS in LFMCW radar 被引量:6
17
作者 LUO Yongjiang BI Luhao ZHAO Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期573-583,共11页
Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient im... Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods. 展开更多
关键词 adaptive digital self-interference cancellation(ADSIC) linear frequency modulated continuous wave(LFMCW)radar fractional order least mean square(LMS)
在线阅读 下载PDF
Using the Fractional Order Method to Generalize Strengthening Buffer Operator and Weakening Buffer Operator 被引量:4
18
作者 Lifeng Wu Sifeng Liu Yingjie Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第6期1074-1078,共5页
To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer oper... To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also results in small adjustments of the buffer effect.The effectiveness of the grey model(GM(1,1)) with the fractional order buffer operator is validated by six cases. 展开更多
关键词 fractional order grey system theory strengthening buffer operator (SBO) weakening buffer operator (WBO)
在线阅读 下载PDF
A Note on Robust Stability Analysis of Fractional Order Interval Systems by Minimum Argument Vertex and Edge Polynomials 被引量:3
19
作者 Baris Baykant Alagoz 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期411-421,共11页
By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investiga... By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investigation is needed for revealing properties of power mapping and demonstration of conformity of Hurwitz stability under power mapping of fractional order characteristic polynomials.Contributions of this study have two folds: Firstly,this paper demonstrates conservation of root argument and magnitude relations under power mapping of characteristic polynomials and thus substantiates validity of Hurwitz stability under power mapping of fractional order characteristic polynomials.This also ensures implications of edge theorem for fractional order interval systems.Secondly,in control engineering point of view,numerical robust stability analysis approaches based on the consideration of minimum argument roots of edge and vertex polynomials are presented.For the computer-aided design of fractional order interval control systems,the minimum argument root principle is applied for a finite set of edge and vertex polynomials,which are sampled from parametric uncertainty box.Several illustrative examples are presented to discuss effectiveness of these approaches. 展开更多
关键词 fractional order systems robust stability edge theorem interval uncertainty
在线阅读 下载PDF
A fractional order hyperchaotic system derived from a Liu system and its circuit realization 被引量:3
20
作者 韩强 刘崇新 +1 位作者 孙蕾 朱大锐 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期133-138,共6页
In this paper we propose a novel four-dimensional fractional order hyperchaotic system derived from a Liu system.Electronics workbench(EWB) and Matlab simulations show the dynamical behavior of the proposed four-dim... In this paper we propose a novel four-dimensional fractional order hyperchaotic system derived from a Liu system.Electronics workbench(EWB) and Matlab simulations show the dynamical behavior of the proposed four-dimensional fractional order hyperchaotic system.Finally,after separately using EWB and Matlab,an electronic circuit is designed to realize the novel four-dimensional fractional order hyperchaotic system and the experimental circuit results are obtained which are identical to software simulations. 展开更多
关键词 fractional order hyperchaotic system numerical simulation circuit experiment
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部