A fractional matching of a graph G is a function f: E(G)→[0,1] such that for each vertex v, ∑eϵΓG(v)f(e)≤1.. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e) over all fractional matchings ...A fractional matching of a graph G is a function f: E(G)→[0,1] such that for each vertex v, ∑eϵΓG(v)f(e)≤1.. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e) over all fractional matchings f. Tian et al. (Linear Algebra Appl 506:579–587, 2016) determined the extremal graphs with minimum distance Laplacian spectral radius among n-vertex graphs with given matching number. However, a natural problem is left open: among all n-vertex graphs with given fractional matching number, how about the lower bound of their distance Laplacian spectral radii and which graphs minimize the distance Laplacian spectral radii? In this paper, we solve these problems completely.展开更多
In this paper the properties of some maximum fractional [0, k]-factors of graphs are presented. And consequently some results on fractional matchings and fractional 1-factors are generalized and a characterization of ...In this paper the properties of some maximum fractional [0, k]-factors of graphs are presented. And consequently some results on fractional matchings and fractional 1-factors are generalized and a characterization of fractional k-factors is obtained.展开更多
In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ...In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.展开更多
基金This work is supported by the Science and Technology Program of Guangzhou,China(No.202002030183)the Guangdong Province Natural Science Foundation(No.2021A1515012045)the Qinghai Province Natural Science Foundation(No.2020-ZJ-924).
文摘A fractional matching of a graph G is a function f: E(G)→[0,1] such that for each vertex v, ∑eϵΓG(v)f(e)≤1.. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e) over all fractional matchings f. Tian et al. (Linear Algebra Appl 506:579–587, 2016) determined the extremal graphs with minimum distance Laplacian spectral radius among n-vertex graphs with given matching number. However, a natural problem is left open: among all n-vertex graphs with given fractional matching number, how about the lower bound of their distance Laplacian spectral radii and which graphs minimize the distance Laplacian spectral radii? In this paper, we solve these problems completely.
基金This work is supported by NSFC (10471078.10201019)RSDP (20040422004) of China
文摘In this paper the properties of some maximum fractional [0, k]-factors of graphs are presented. And consequently some results on fractional matchings and fractional 1-factors are generalized and a characterization of fractional k-factors is obtained.
文摘In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.