A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).A...The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.展开更多
This paper extends the quantitative stability results to a more general class of two-stage stochastic variational inequality problems(TSVIP).The existence of solutions to the TSVIP is discussed,and the quantitative re...This paper extends the quantitative stability results to a more general class of two-stage stochastic variational inequality problems(TSVIP).The existence of solutions to the TSVIP is discussed,and the quantitative relationship between the TSVIP and its distribution perturbed problem is derived.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
To address the mooring issues of floating photovoltaic systems in areas with large tidal variations,three mooring schemes were designed and compared in this paper:anchor chain,anchor chain with added weights,and ancho...To address the mooring issues of floating photovoltaic systems in areas with large tidal variations,three mooring schemes were designed and compared in this paper:anchor chain,anchor chain with added weights,and anchor chain with Superflex.The model was established via the numerical simulation tool Orcaflex,which considers the combined effects of wind,waves,and currents.A time-domain coupled dynamic analysis was conducted on the performance of the three mooring schemes under various tidal conditions to determine the mooring cable tension and platform motion response.Furthermore,the mooring system with an anchor chain and Superflex was optimized,with a focus on analyzing the effects of the Superflex length,the diameter of the anchor chains,and the mooring radius.The mooring system with the anchor chain and Superflex exhibits more controllable and stable mooring performance in areas with large tidal variations,so that it more effectively maintains the required mooring tension level.These findings not only provide a reference for the feasibility and optimization design of photovoltaic systems in areas with large tidal variations but also offer valuable experience for the sustainable application of clean energy under specific environmental conditions.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Objective:To investigate mutations in the Chikungunya(CHIKV)envelope genome region and evaluate their potential impact on B lymphocyte epitopes via in silico analysis.Methods:E1,E2 and 6K protein genes were sequenced ...Objective:To investigate mutations in the Chikungunya(CHIKV)envelope genome region and evaluate their potential impact on B lymphocyte epitopes via in silico analysis.Methods:E1,E2 and 6K protein genes were sequenced from viral RNA isolated from 13 CHIKV-positive serum samples from Alagoas State,Brazil,during the 2016 outbreak.Phylogenetic analysis,experimental epitope identification in the immune epitope database(IEDB)and in silico approaches were employed to predict the potential impact of the detected mutations.Results:The sequences were clustered via phylogenetic analysis.The CHIKV isolates belong to the ECSA genotype,with 13 detected amino acid mutations.Five mutations are located on the surface of the viral particle in regions critical for cellular receptor interaction.Nine mutations are known experimentally validated epitopes for B and T cells.In B-cell epitope predictions,mutations affect sequences within three conformational epitopes in E2 and one in E1,as well as linear epitopes.Notably,the E2-G60D mutation found in the Alagoas strain has been previously reported to influence the vector competence of Aedes aegypti,the primary vector in Brazil.Conclusions:Genomic surveillance and an in-depth understanding of viral mutations are crucial for adapting public health strategies and improving the outbreak response.These findings could have significant public health implications,such as the development of more effective vaccines,diagnostic tests,and antiviral therapies.展开更多
BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for as...BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for assessment of bowel disease in children has not been previously described.AIM To determine feasibility of superior mesenteric venous and arterial flow quantitation in pediatric patients using 4D flow MRI.METHODS Nine pediatric patients(7-14 years old,5 male and 4 female)with history or suspicion of bowel pathology,who underwent magnetic resonance(MR)enterography with 4D flow MR protocol from November 2022 to October 2023.Field strength/sequence:3T MRI using 4D flow MR protocol.Flow velocity and peak speed measurements were performed by two diagnostic radiologists placing the region of interest in perpendicular plane to blood flow on each cross section of superior mesenteric artery(SMA)and superior mesenteric vein(SMV)at three predetermined levels.Bland-Altman analysis,showed good agreement of flow velocity and peak speed measurements of SMV and SMA between two readers.RESULTS Mean SMV flow velocity increased from proximal to mid to distal(0.14 L/minute,0.17 L/minute,0.22 L/minute respectively).Mean SMA flow velocity decreased from proximal to mid to distal(0.35 L/minute,0.27 L/minute,0.21 L/minute respectively).Observed agreement was good for flow velocity measurements of SMV(mean bias-0.01 L/minute and 95%limits of agreement,-0.09 to 0.08 L/minute)and SMA(mean bias-0.03 L/minute and 95%limits of agreement,-0.23 to 0.17 L/minute)between two readers.Good agreement for peak speed measurements of SMV(mean bias-1.2 cm/second and 95%limits of agreement,-9.4 to 7.0 cm/second)and SMA(mean bias-3.2 cm/second and 95%limits of agreement,-31.4 to 24.9 cm/second).CONCLUSION Flow quantitation using 4D Flow is feasible to provide hemodynamic information for SMV and SMA in children.展开更多
Pingquan City,the origin of five rivers,serves as the core water conservation zone for the Beijing-Tianjin-Hebei region and exemplifies the characteristics of small watersheds in hilly areas.In recent years,excessive ...Pingquan City,the origin of five rivers,serves as the core water conservation zone for the Beijing-Tianjin-Hebei region and exemplifies the characteristics of small watersheds in hilly areas.In recent years,excessive mining and intensified human activities have severely disrupted the local ecosystem,creating an urgent need for ecological vulnerability assessment to enhance water conservation functions.This study employed the sensitivity-resilience-pressure model,integrating various data sources,including regional background,hydro-meteorological data,field investigations,remote sensing analysis,and socio-economic data.The weights of the model indices were determined using an entropy weighting model that combines principal component analysis and the analytic hierarchy process.Using the ArcGIS platform,the spatial distribution and driving forces of ecological vulnerability in 2020 were analyzed,providing valuable insights for regional ecological restoration.The results indicated that the overall Ecological Vulnerability Index(EVI)was 0.389,signifying moderate ecological vulnerability,with significant variation between watersheds.The Daling River Basin had a high EVI,with ecological vulnerability primarily in levels IV and V,indicating high ecological pressure,whereas the Laoniu River Basin had a low EVI,reflecting minimal ecological pressure.Soil type was identified as the primary driving factor,followed by elevation,temperature,and soil erosion as secondary factors.It is recommended to focus on key regions and critical factors while conducting comprehensive monitoring and assessment to ensure the long-term success of ecological management efforts.展开更多
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying...Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.展开更多
Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical...Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical components and sources of fine particulate matter(PM2.5)under different pollution levels were comparatively analyzed using PMF(Positive Matrix Factorization)and backward trajectory analysis.SNA(NO_(3)^(-),NH_(4)^(+),SO_(4)^(2-))was found to be the primary chemical component of PM2.5,making up 63.6%(clean days)to 69.7%(heavy pollution)of it.The NO_(3)^(-)concentration was 3.14(clean days)to 6.01(heavy pollution)times higher than that of SO_(4)^(2-).NO_(3)^(-),POC,Fe,Mn,Al concentrations increased,while SOC,EC,crustal elements(Ca,Si)and other water-soluble ions(WSIs)concentrations decreased as the pollution level increased.The contribution of secondary inorganics and biomass-burning emissions and industrial and ship emissions increased significantly as the pollution level increased,which accounted for 40.3%and 36.7%,respectively,in the heavy pollution stage.The contribution of traffic sources decreases gradually with increasing pollution levels,accounting for only 59.1%of the light pollution stage in the heavy pollution stage.PM_(2.5) and its main chemical components showed similar potential source distribution,located in the northwest(Fuyang,Huainan,Nanjing),south(Taizhou,Lishui,Jiande)and north(Taizhou,Yancheng).However,distinct transport routes were observed under the different air quality levels.During the heavy pollution period,the polluted air masses primarily came from the harbor regions,whereas during the light pollution period they were transported from the southeast(Taizhou)and the North China Plain.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg...In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg and the soft leg on mid-span deflection has not been considered in the past. In the paper, the mathematical model is established for universal large-span and heavy-duty gantry cranes. The analytical solution for the mid-span deflection of gantry-frame structure girder is derived and obtained based on the variation principle by considering the coupling effect of the bending moments of girder and legs, the axial force and the secondary bending moments. The relation between the load and the deflection on the mid-span of the gantry-frame structure girder is known. Then, the experimental model is designed according to dimensional analysis method. And experiments were performed on the WEW-600 B type testing machine. Hackling experimental data, the regular of the load and deflection on the girder mid-span is obtained, namely, the deformation of the gantry-frame structure resists the external load to do work. The validity of the nonlinear analytical solution of the girder deflection is verified. Experimental results show that the analytical solution of the gantry-frame structure deflection has much higher calculation accuracy than previous calculation method. This work provides a theoretical basis for the design and inspection of gantry-frame structures.展开更多
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the meso...A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.展开更多
In this paper, variational inference is studied on manifolds with certain metrics. To solve the problem, the analysis is first proposed for the variational Bayesian on Lie group, and then extended to the manifold that...In this paper, variational inference is studied on manifolds with certain metrics. To solve the problem, the analysis is first proposed for the variational Bayesian on Lie group, and then extended to the manifold that is approximated by Lie groups. Then the convergence of the proposed algorithm with respect to the manifold metric is proved in two iterative processes: variational Bayesian expectation (VB-F) step and variational Bayesian maximum (VB-M) step. Moreover, the effective of different metrics for Bayesian analysis is discussed.展开更多
Because they are most sensitive to atmospheric moisture content, radar refractivity observations can provide high-resolution information about the highly variable low-level moisture field. In this study, simulated rad...Because they are most sensitive to atmospheric moisture content, radar refractivity observations can provide high-resolution information about the highly variable low-level moisture field. In this study, simulated radar refractivity-related phase-change data were created using a radar simulator from realistic highresolution model simulation data for a dryline case. These data were analyzed using the 2DVAR system developed specifically for the phase-change data. Two sets of experiments with the simulated observations were performed, one assuming a uniform target spacing of 250 m and one assuming nonuniform spacing between 250 m to 4 km. Several sources of observation error were considered, and their impacts were examined. They included errors due to ground target position uncertainty, typical random errors associated with radar measurements, and gross error due to phase wrapping. Without any additional information, the 2DVAR system was incapable of dealing with phase-wrapped data directly. When there was no phase wrapping in the data, the 2DVAR produced ex- cellent analyses, even in the presence of both position uncertainty and random radar measurement errors. When a separate pre-processing step was applied to unwrap the phase-wrapped data, quality moisture anal- yses were again obtained, although the analyses were smoother due to the reduced effective resolution of the observations by interpolation and smoothing involved in the unwrapping procedure. The unwrapping procedure was effective even when significant differences existed between the analyzed state and the state at a reference time. The results affirm the promise of using radar refractivity phase-change measurements for near-surface moisture analysis.展开更多
A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality...A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality for the velocity and a nonlinear vari- ational equation for the temperature. The existence and uniqueness results are obtained by a proposed fixed point method.展开更多
Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fre...Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.展开更多
On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite...On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
基金The National Key Research and Development Program of China under contract Nos 2017YFC1501803 and2018YFC1506903the National Natural Science Foundation of China under contract Nos 91730304,41475021 and 41575026
文摘The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.
基金Supported by the Guangxi Natural Science Foundation (2024GXNSFBA010345)the Innovation and Entrepreneurship Training Program of Guangxi Minzu University (S202310608001)。
文摘This paper extends the quantitative stability results to a more general class of two-stage stochastic variational inequality problems(TSVIP).The existence of solutions to the TSVIP is discussed,and the quantitative relationship between the TSVIP and its distribution perturbed problem is derived.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200700).
文摘To address the mooring issues of floating photovoltaic systems in areas with large tidal variations,three mooring schemes were designed and compared in this paper:anchor chain,anchor chain with added weights,and anchor chain with Superflex.The model was established via the numerical simulation tool Orcaflex,which considers the combined effects of wind,waves,and currents.A time-domain coupled dynamic analysis was conducted on the performance of the three mooring schemes under various tidal conditions to determine the mooring cable tension and platform motion response.Furthermore,the mooring system with an anchor chain and Superflex was optimized,with a focus on analyzing the effects of the Superflex length,the diameter of the anchor chains,and the mooring radius.The mooring system with the anchor chain and Superflex exhibits more controllable and stable mooring performance in areas with large tidal variations,so that it more effectively maintains the required mooring tension level.These findings not only provide a reference for the feasibility and optimization design of photovoltaic systems in areas with large tidal variations but also offer valuable experience for the sustainable application of clean energy under specific environmental conditions.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by Decit/SCTIE-Ministério da Saúde,Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq),Fundação de AmparoàPesquisa do Estado de Alagoas(FAPEAL)and Secretaria de Estado da Saúde de Alagoas(SESAU-AL)[PPSUS 60030000841/2016].
文摘Objective:To investigate mutations in the Chikungunya(CHIKV)envelope genome region and evaluate their potential impact on B lymphocyte epitopes via in silico analysis.Methods:E1,E2 and 6K protein genes were sequenced from viral RNA isolated from 13 CHIKV-positive serum samples from Alagoas State,Brazil,during the 2016 outbreak.Phylogenetic analysis,experimental epitope identification in the immune epitope database(IEDB)and in silico approaches were employed to predict the potential impact of the detected mutations.Results:The sequences were clustered via phylogenetic analysis.The CHIKV isolates belong to the ECSA genotype,with 13 detected amino acid mutations.Five mutations are located on the surface of the viral particle in regions critical for cellular receptor interaction.Nine mutations are known experimentally validated epitopes for B and T cells.In B-cell epitope predictions,mutations affect sequences within three conformational epitopes in E2 and one in E1,as well as linear epitopes.Notably,the E2-G60D mutation found in the Alagoas strain has been previously reported to influence the vector competence of Aedes aegypti,the primary vector in Brazil.Conclusions:Genomic surveillance and an in-depth understanding of viral mutations are crucial for adapting public health strategies and improving the outbreak response.These findings could have significant public health implications,such as the development of more effective vaccines,diagnostic tests,and antiviral therapies.
文摘BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for assessment of bowel disease in children has not been previously described.AIM To determine feasibility of superior mesenteric venous and arterial flow quantitation in pediatric patients using 4D flow MRI.METHODS Nine pediatric patients(7-14 years old,5 male and 4 female)with history or suspicion of bowel pathology,who underwent magnetic resonance(MR)enterography with 4D flow MR protocol from November 2022 to October 2023.Field strength/sequence:3T MRI using 4D flow MR protocol.Flow velocity and peak speed measurements were performed by two diagnostic radiologists placing the region of interest in perpendicular plane to blood flow on each cross section of superior mesenteric artery(SMA)and superior mesenteric vein(SMV)at three predetermined levels.Bland-Altman analysis,showed good agreement of flow velocity and peak speed measurements of SMV and SMA between two readers.RESULTS Mean SMV flow velocity increased from proximal to mid to distal(0.14 L/minute,0.17 L/minute,0.22 L/minute respectively).Mean SMA flow velocity decreased from proximal to mid to distal(0.35 L/minute,0.27 L/minute,0.21 L/minute respectively).Observed agreement was good for flow velocity measurements of SMV(mean bias-0.01 L/minute and 95%limits of agreement,-0.09 to 0.08 L/minute)and SMA(mean bias-0.03 L/minute and 95%limits of agreement,-0.23 to 0.17 L/minute)between two readers.Good agreement for peak speed measurements of SMV(mean bias-1.2 cm/second and 95%limits of agreement,-9.4 to 7.0 cm/second)and SMA(mean bias-3.2 cm/second and 95%limits of agreement,-31.4 to 24.9 cm/second).CONCLUSION Flow quantitation using 4D Flow is feasible to provide hemodynamic information for SMV and SMA in children.
基金supported by the project of China Geological Survey(No.DD20220954)Open Funding Project of the Key Laboratory of Groundwater Sciences and Engineering,Ministry of Natural Resources(No.SK202301-4)+1 种基金Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2022KFKTC009)Yanzhao Shanshui Science and Innovation Fund of Langfang Integrated Natural Resources Survey Center,China Geological Survey(No.YZSSJJ202401-001).
文摘Pingquan City,the origin of five rivers,serves as the core water conservation zone for the Beijing-Tianjin-Hebei region and exemplifies the characteristics of small watersheds in hilly areas.In recent years,excessive mining and intensified human activities have severely disrupted the local ecosystem,creating an urgent need for ecological vulnerability assessment to enhance water conservation functions.This study employed the sensitivity-resilience-pressure model,integrating various data sources,including regional background,hydro-meteorological data,field investigations,remote sensing analysis,and socio-economic data.The weights of the model indices were determined using an entropy weighting model that combines principal component analysis and the analytic hierarchy process.Using the ArcGIS platform,the spatial distribution and driving forces of ecological vulnerability in 2020 were analyzed,providing valuable insights for regional ecological restoration.The results indicated that the overall Ecological Vulnerability Index(EVI)was 0.389,signifying moderate ecological vulnerability,with significant variation between watersheds.The Daling River Basin had a high EVI,with ecological vulnerability primarily in levels IV and V,indicating high ecological pressure,whereas the Laoniu River Basin had a low EVI,reflecting minimal ecological pressure.Soil type was identified as the primary driving factor,followed by elevation,temperature,and soil erosion as secondary factors.It is recommended to focus on key regions and critical factors while conducting comprehensive monitoring and assessment to ensure the long-term success of ecological management efforts.
基金supported by the National Natural Science Foundation of China(Nos.42530801,42425208)the Natural Science Foundation of Hubei Province(China)(No.2023AFA001)+1 种基金the MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.MSFGPMR2025-401)the China Scholarship Council(No.202306410181)。
文摘Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.
基金supported by the National Key Research and Development Program of China(No.2022YFC3701204)the Natural Science Foundation of Jiangsu Province(No.BK20231300).
文摘Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical components and sources of fine particulate matter(PM2.5)under different pollution levels were comparatively analyzed using PMF(Positive Matrix Factorization)and backward trajectory analysis.SNA(NO_(3)^(-),NH_(4)^(+),SO_(4)^(2-))was found to be the primary chemical component of PM2.5,making up 63.6%(clean days)to 69.7%(heavy pollution)of it.The NO_(3)^(-)concentration was 3.14(clean days)to 6.01(heavy pollution)times higher than that of SO_(4)^(2-).NO_(3)^(-),POC,Fe,Mn,Al concentrations increased,while SOC,EC,crustal elements(Ca,Si)and other water-soluble ions(WSIs)concentrations decreased as the pollution level increased.The contribution of secondary inorganics and biomass-burning emissions and industrial and ship emissions increased significantly as the pollution level increased,which accounted for 40.3%and 36.7%,respectively,in the heavy pollution stage.The contribution of traffic sources decreases gradually with increasing pollution levels,accounting for only 59.1%of the light pollution stage in the heavy pollution stage.PM_(2.5) and its main chemical components showed similar potential source distribution,located in the northwest(Fuyang,Huainan,Nanjing),south(Taizhou,Lishui,Jiande)and north(Taizhou,Yancheng).However,distinct transport routes were observed under the different air quality levels.During the heavy pollution period,the polluted air masses primarily came from the harbor regions,whereas during the light pollution period they were transported from the southeast(Taizhou)and the North China Plain.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
基金Project(51175442)supported by the National Natural Science Foundation of ChinaProject(QD2012A09)supported by Teachers’College Research Project,ChinaProject(14ZA0263)supported by Research Project of Sichuan Provincial Department of Education,China
文摘In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg and the soft leg on mid-span deflection has not been considered in the past. In the paper, the mathematical model is established for universal large-span and heavy-duty gantry cranes. The analytical solution for the mid-span deflection of gantry-frame structure girder is derived and obtained based on the variation principle by considering the coupling effect of the bending moments of girder and legs, the axial force and the secondary bending moments. The relation between the load and the deflection on the mid-span of the gantry-frame structure girder is known. Then, the experimental model is designed according to dimensional analysis method. And experiments were performed on the WEW-600 B type testing machine. Hackling experimental data, the regular of the load and deflection on the girder mid-span is obtained, namely, the deformation of the gantry-frame structure resists the external load to do work. The validity of the nonlinear analytical solution of the girder deflection is verified. Experimental results show that the analytical solution of the gantry-frame structure deflection has much higher calculation accuracy than previous calculation method. This work provides a theoretical basis for the design and inspection of gantry-frame structures.
文摘A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.
基金This work was supported by the National Key Research and Development Program of China (No. 2016YF-B0901900) and the National Natural Science Foundation of China (Nos. 61733018, 61333001, 61573344).
文摘In this paper, variational inference is studied on manifolds with certain metrics. To solve the problem, the analysis is first proposed for the variational Bayesian on Lie group, and then extended to the manifold that is approximated by Lie groups. Then the convergence of the proposed algorithm with respect to the manifold metric is proved in two iterative processes: variational Bayesian expectation (VB-F) step and variational Bayesian maximum (VB-M) step. Moreover, the effective of different metrics for Bayesian analysis is discussed.
基金supported by the National Science Foundation (Grant No. AGS-0750790)supported by the NSF grants (Grant Nos. AGS-0802888,OCI-0905040,AGS-0941491,AGS-1046171,and AGS-1046081)
文摘Because they are most sensitive to atmospheric moisture content, radar refractivity observations can provide high-resolution information about the highly variable low-level moisture field. In this study, simulated radar refractivity-related phase-change data were created using a radar simulator from realistic highresolution model simulation data for a dryline case. These data were analyzed using the 2DVAR system developed specifically for the phase-change data. Two sets of experiments with the simulated observations were performed, one assuming a uniform target spacing of 250 m and one assuming nonuniform spacing between 250 m to 4 km. Several sources of observation error were considered, and their impacts were examined. They included errors due to ground target position uncertainty, typical random errors associated with radar measurements, and gross error due to phase wrapping. Without any additional information, the 2DVAR system was incapable of dealing with phase-wrapped data directly. When there was no phase wrapping in the data, the 2DVAR produced ex- cellent analyses, even in the presence of both position uncertainty and random radar measurement errors. When a separate pre-processing step was applied to unwrap the phase-wrapped data, quality moisture anal- yses were again obtained, although the analyses were smoother due to the reduced effective resolution of the observations by interpolation and smoothing involved in the unwrapping procedure. The unwrapping procedure was effective even when significant differences existed between the analyzed state and the state at a reference time. The results affirm the promise of using radar refractivity phase-change measurements for near-surface moisture analysis.
文摘A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality for the velocity and a nonlinear vari- ational equation for the temperature. The existence and uniqueness results are obtained by a proposed fixed point method.
文摘Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.
基金Project supported by National Natural Science Foundation of China.
文摘On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.