This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the meso...A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.展开更多
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte...Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.展开更多
The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).A...The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.展开更多
Forecasting convective storms using NWP models is an important goal and a highly active area of ongoing research. Skillful and reliable NWP of convective storms could allow for severe weather warnings with longer lead...Forecasting convective storms using NWP models is an important goal and a highly active area of ongoing research. Skillful and reliable NWP of convective storms could allow for severe weather warnings with longer lead times, as opera- tional forecasters begin to incorporate convective-scale fore- casts into severe weather forecast operations (Stensrud et al., 2009, 2013). This would then provide vulnerable individuals and industries with more time to seek shelter and/or mitigate the impact of severe weather hazards.展开更多
Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an impr...Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%.展开更多
Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lan...Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.展开更多
Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity chan...Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications.展开更多
Cirrus clouds play a crucial role in the energy balance of the Earth-atmosphere system.We investigated the spatiotemporal variations of cirrus over the South China Sea(SCS)using satellite data(MOD08,MYD08,CALIPSO)and ...Cirrus clouds play a crucial role in the energy balance of the Earth-atmosphere system.We investigated the spatiotemporal variations of cirrus over the South China Sea(SCS)using satellite data(MOD08,MYD08,CALIPSO)and reanalysis data(MERRA-2)from March 2007 to February 2015(eight years).The horizontal distribution reveals lower cirrus fraction values in the northern SCS and higher values in the southern region,with minima observed in March and April and maxima sequentially occurring in August(northern SCS,NSCS),September(middle SCS,MSCS),and December(southern SCS,SSCS).Vertically,the cirrus fraction peaks in summer and reaches its lowest levels in spring.Opaque cirrus dominates during summer in the NSCS and MSCS,comprising 53.6%and 55.9%,respectively,while the SSCS exhibits a higher frequency of opaque cirrus relative to other cloud types.Subvisible cirrus clouds have the lowest frequency year-round,whereas thin cirrus is most prominent in winter in the NSCS(46.3%)and in spring in the MSCS(45.3%).A case study from September 2021 further explores the influence of ice crystal habits on brightness temperature(BT)over the SCS.Simulations utilizing five ice crystal shapes from the ARTS DDA(Atmospheric Radiative Transfer Simulator Discrete Dipole Approximation)database and the RTTOV 12.4 radiative transfer model reveal that the 8-column-aggregate shape best represents BT in the NSCS and SSCS,while the large-block-aggregate shape performs better in the SSCS.展开更多
The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas...The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.展开更多
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons in the brainstem and spinal cord,leading to muscle weakness,para...Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons in the brainstem and spinal cord,leading to muscle weakness,paralysis,and respiratory failure (Morgan and Orrell,2016).展开更多
A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from...A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.展开更多
A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generat...A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generated by Monte Carlo forecast (MCF) or lagged average forecast (LAF). This method possesses significant statistical characteristic of MCF, and by virtue of LAF that contains multi-time information and its initial members are harmonic with展开更多
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu...Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.展开更多
Epigenetics-mediated breeding(epibreeding)involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity.While conventional bree...Epigenetics-mediated breeding(epibreeding)involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity.While conventional breeding methods raise concerns about reduced genetic diversity,epibreeding propels crop improvement through epigenetic variations that regulate gene expression,ultimately impacting crop yield.Epigenetic regulation in crops encompasses various modes,including histone modification,DNA modification,RNA modification,non-coding RNA,and chromatin remodeling.This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process.We propose a valuable strategy for improving maize yield through epibreeding,combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics(SynEpi).Finally,we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.展开更多
In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenario...In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers.The proposed design modifies the extended Kalman filter(EKF)for the global navigation satellite system(GNSS),integrating the maximum correntropy criterion(MCC)and the variational Bayesian(VB)method.This adaptive algorithm effectively reduces non-line-of-sight(NLOS)reception contamination and improves estimation accuracy,particularly in time-varying GNSS measurements.Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise.By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration,the VBMCEKF achieves superior filtering performance in challenging GNSS conditions.The method’s adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments.展开更多
Southerly moisture surges over the central South China Sea(SCS)are characterized by the strengthening of lowlevel southerlies that transport moisture northward from the Pacific or Indian Oceans to South China.These su...Southerly moisture surges over the central South China Sea(SCS)are characterized by the strengthening of lowlevel southerlies that transport moisture northward from the Pacific or Indian Oceans to South China.These surge events typically occur for days in the early-summer season(from April to June)and can lead to heavy rains in South China.This study categorizes surge events into three types of flow patterns and examines their multiscale variations and impacts on rainfall.The first type occurs mainly in April,with the southeasterlies enhanced by a deepening trough in South China and the western Pacific subtropical high established over the SCS.The second type of surge events mostly appears in June,featuring the prevailing southwesterlies of summer monsoon from the Indian Ocean during the active phases of intraseasonal oscillations.Most surge events exhibit semi-diurnal variations with morning and afternoon peaks of northward moisture fluxes.Specifically,the first type features a dominant afternoon peak,while the second type shows a dominant early-morning peak,which is induced by thermal contrast between the Indochina Peninsula and the SCS.In general,the surge events enhance moisture convergence and increase rainfall downstream in South China,but they show some regional differences.The second type strengthens moisture convergence and rainfall in coastal regions with a morning peak.In contrast,the first type enhances inland rainfall with a morning peak,while moisture divergence dominates coastal regions.The third type of surge events denotes transitional conditions between the first two types,in terms of atmospheric circulations,diurnal cycles,and rainfall patterns.These results highlight a diversity of regional moisture surges and related rainfall ranging from diurnal to sub-seasonal scales.展开更多
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil...Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.展开更多
BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free r...BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.展开更多
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
文摘A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.
基金the National Basic Research Program (973 Program) (No.2010CB 951604)the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (meteorology) [Grant No. GYHY(QX)200906009]+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2010AA012304)the LASG free exploration fund
文摘Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.
基金The National Key Research and Development Program of China under contract Nos 2017YFC1501803 and2018YFC1506903the National Natural Science Foundation of China under contract Nos 91730304,41475021 and 41575026
文摘The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.
文摘Forecasting convective storms using NWP models is an important goal and a highly active area of ongoing research. Skillful and reliable NWP of convective storms could allow for severe weather warnings with longer lead times, as opera- tional forecasters begin to incorporate convective-scale fore- casts into severe weather forecast operations (Stensrud et al., 2009, 2013). This would then provide vulnerable individuals and industries with more time to seek shelter and/or mitigate the impact of severe weather hazards.
基金Ministry of Science and Technology of the People’s Republic of China for its support and guidance(Grant No.2018YFC0214100)。
文摘Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506003)
文摘Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.
基金supported by the National Natural Science Foundation of China(Grant Nos.41075062,91125016)the National Basic Research Program of China(Grants Nos.2010CB951001,2010CB428403)
文摘Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.42027804,41775026,and 41075012)。
文摘Cirrus clouds play a crucial role in the energy balance of the Earth-atmosphere system.We investigated the spatiotemporal variations of cirrus over the South China Sea(SCS)using satellite data(MOD08,MYD08,CALIPSO)and reanalysis data(MERRA-2)from March 2007 to February 2015(eight years).The horizontal distribution reveals lower cirrus fraction values in the northern SCS and higher values in the southern region,with minima observed in March and April and maxima sequentially occurring in August(northern SCS,NSCS),September(middle SCS,MSCS),and December(southern SCS,SSCS).Vertically,the cirrus fraction peaks in summer and reaches its lowest levels in spring.Opaque cirrus dominates during summer in the NSCS and MSCS,comprising 53.6%and 55.9%,respectively,while the SSCS exhibits a higher frequency of opaque cirrus relative to other cloud types.Subvisible cirrus clouds have the lowest frequency year-round,whereas thin cirrus is most prominent in winter in the NSCS(46.3%)and in spring in the MSCS(45.3%).A case study from September 2021 further explores the influence of ice crystal habits on brightness temperature(BT)over the SCS.Simulations utilizing five ice crystal shapes from the ARTS DDA(Atmospheric Radiative Transfer Simulator Discrete Dipole Approximation)database and the RTTOV 12.4 radiative transfer model reveal that the 8-column-aggregate shape best represents BT in the NSCS and SSCS,while the large-block-aggregate shape performs better in the SSCS.
基金supported by the CAS Pioneer Hundred Talents Program and Second Tibetan Plateau Scientific Expedition Research Program(2019QZKK0708)as well as the Basic Research Program of Qinghai Province:Lithospheric Geomagnetic Field of the Qinghai‒Tibet Plateau and the Relationship with Strong Earthquakes(2021-ZJ-969Q).
文摘The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.
文摘Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons in the brainstem and spinal cord,leading to muscle weakness,paralysis,and respiratory failure (Morgan and Orrell,2016).
基金the 973 Program (Grant No. 2004CB418305)the National Natural Science Foundation of China (Grant No. 40575049)
文摘A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.
文摘A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generated by Monte Carlo forecast (MCF) or lagged average forecast (LAF). This method possesses significant statistical characteristic of MCF, and by virtue of LAF that contains multi-time information and its initial members are harmonic with
基金supported by the National Natural Science Foundation of China(Nos.42030707,72394404)the International Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Fundamental Research Fund for the Central Universities(Nos.20720210083,20720210082).
文摘Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.
基金supported by funding from the National Key R&D Program of China(2023ZD0407304)the Sci-Tech Innovation 2030 Agenda(2022ZD0115703)Fundamental Research Funds for Central Non-Profit of Chinese Academy of Agricultural Sciences(Y2023PT20).
文摘Epigenetics-mediated breeding(epibreeding)involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity.While conventional breeding methods raise concerns about reduced genetic diversity,epibreeding propels crop improvement through epigenetic variations that regulate gene expression,ultimately impacting crop yield.Epigenetic regulation in crops encompasses various modes,including histone modification,DNA modification,RNA modification,non-coding RNA,and chromatin remodeling.This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process.We propose a valuable strategy for improving maize yield through epibreeding,combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics(SynEpi).Finally,we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
基金supported by the National Science and Technology Council,Taiwan under grants NSTC 111-2221-E-019-047 and NSTC 112-2221-E-019-030.
文摘In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers.The proposed design modifies the extended Kalman filter(EKF)for the global navigation satellite system(GNSS),integrating the maximum correntropy criterion(MCC)and the variational Bayesian(VB)method.This adaptive algorithm effectively reduces non-line-of-sight(NLOS)reception contamination and improves estimation accuracy,particularly in time-varying GNSS measurements.Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise.By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration,the VBMCEKF achieves superior filtering performance in challenging GNSS conditions.The method’s adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments.
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)National Natural Science Foundation of China(42475003)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP209)。
文摘Southerly moisture surges over the central South China Sea(SCS)are characterized by the strengthening of lowlevel southerlies that transport moisture northward from the Pacific or Indian Oceans to South China.These surge events typically occur for days in the early-summer season(from April to June)and can lead to heavy rains in South China.This study categorizes surge events into three types of flow patterns and examines their multiscale variations and impacts on rainfall.The first type occurs mainly in April,with the southeasterlies enhanced by a deepening trough in South China and the western Pacific subtropical high established over the SCS.The second type of surge events mostly appears in June,featuring the prevailing southwesterlies of summer monsoon from the Indian Ocean during the active phases of intraseasonal oscillations.Most surge events exhibit semi-diurnal variations with morning and afternoon peaks of northward moisture fluxes.Specifically,the first type features a dominant afternoon peak,while the second type shows a dominant early-morning peak,which is induced by thermal contrast between the Indochina Peninsula and the SCS.In general,the surge events enhance moisture convergence and increase rainfall downstream in South China,but they show some regional differences.The second type strengthens moisture convergence and rainfall in coastal regions with a morning peak.In contrast,the first type enhances inland rainfall with a morning peak,while moisture divergence dominates coastal regions.The third type of surge events denotes transitional conditions between the first two types,in terms of atmospheric circulations,diurnal cycles,and rainfall patterns.These results highlight a diversity of regional moisture surges and related rainfall ranging from diurnal to sub-seasonal scales.
基金funded by the National Natural Science Foundation of China(grant no.32270238 and 31870311).
文摘Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.
文摘BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.