Cross-cultural management is often regarded as a discipline of international management focusing on cultural encounters between the organization and the nation-state, and providing tools to tackle cultural difl'erenc...Cross-cultural management is often regarded as a discipline of international management focusing on cultural encounters between the organization and the nation-state, and providing tools to tackle cultural difl'erences seen as sources of conflict, friction or misunderstanding. Based on Greet Hofstede' s Cultural Model, this paper attempts to shed some light on effective corporation management through cultural analysis of the difl'erences between China and western countries. The paper puts more emphasis on the impact of cultural compatibility on effective corporation man- agement through the case study of China, Japan, Germany and America. The author argues that managers and employ- ees involved in companies with diverse cultural backgrounds should be integrated and developed into a specific local context through interlocking their cultural identifications and the organizational practices.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport i...Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations.Moreover,autonomous taxiing is envisioned as a key component in future digitalized airports.However,state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases.The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions.This paper proposes a new approach for generating efficient four-dimensional trajectories(4DTs)on the basis of a high-fidelity aircraft model and gainscheduling control strategy.Working in conjunction with a routing and scheduling algorithm that determines the taxi route,waypoints,and time deadlines,the proposed approach generates fuel-efficient 4DTs in real time,while respecting operational constraints.The proposed approach can be used in two contexts:①as a reactive decision support tool to generate new trajectories that can resolve unprecedented events;and②as an autopilot system for both partial and fully autonomous taxiing.The proposed methodology is realistic and simple to implement.Moreover,simulation studies show that the proposed approach is capable of providing an up to 11%reduction in the fuel consumed during the taxiing of a large Boeing 747-100 jumbo jet.展开更多
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ...As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.展开更多
A large amount of progress has achieved in neuroscience,however,there is still a lack of reasonable model for the storage/output(S/O)of life information.The cyclical motion of cardio-and pulmonary-myocyte is a typical...A large amount of progress has achieved in neuroscience,however,there is still a lack of reasonable model for the storage/output(S/O)of life information.The cyclical motion of cardio-and pulmonary-myocyte is a typical process of the life information S/O,while the opening and closing sites of Ca^(2+)ion channels during the motion can form a genetically programmed time-dependent three-dimensional(3D)pattern.Those phenomena indicate a strong correlation of the information S/O model of these myocytes with the time-sequence 3D patterns.Therefore,based on the time-dependent Ca^(2+)fluorescence imaging during the motion of cardio-and pulmonary-myocyte,here we suggest a four-dimensional(4D)code of information S/O model in cell and nervous system.Further from the fact of pulmonary myocyte motion able to be controlled by brain,it is deduced that the 4D code in brain has a role of controlling muscles through a pathway of the central nervous system,peripheral nervous system,neuromuscular junction,and muscle cells.In addition,we also suggested the 4D code of non-innate skill that can be programmed by the learning/training of a long time(~3 years),such as walking,writing,painting,sports,speech,singing,and dancing.Noticeably,this 4D S/O model is reasonable for the ultralow energy consumption of life information transmission.展开更多
With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.Th...With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.This paper proposes an innovative fingerprint template protection scheme,which generates key streams through an improved fourdimensional superchaotic system(4CSCS),uses the space-filling property of Hilbert curves to achieve pixel scrambling,and introduces dynamic DNA encoding to improve encryption.Experimental results show that this scheme has a large key space 2^(528),encrypts image information entropy of more than 7.9970,and shows excellent performance in defending against statistical attacks and differential attacks.Compared with existing methods,this scheme has significant advantages in terms of encryption performance and security,and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.展开更多
Leesmidt et al present a comprehensive analysis of abdominal vascular flow in children using four-dimensional(4D)flow magnetic resonance imaging(MRI),aim to establish normal hemodynamic values for the abdominal viscer...Leesmidt et al present a comprehensive analysis of abdominal vascular flow in children using four-dimensional(4D)flow magnetic resonance imaging(MRI),aim to establish normal hemodynamic values for the abdominal visceral organs and to assess the feasibility of 4D flow MRI(4D-f-MRI)in this population.The researchers performed 4D-f-MRI on 9 pediatric patients with a history or suspi-cion of bowel pathology.Flow velocities were measured in the abdominal aorta and superior and inferior mesenteric arteries.The quality of the 4D-f-MRI images was evaluated,and the agreement between the measured flow velocities and those obtained from Duplex ultrasound was established.However,due to the specific limitations of this work,future studies should address the issues of small sample size and the specific age group design.展开更多
Addressing the core weaknesses in the innovation and entrepreneurship capabilities of vocational college graduates,such as market insight and risk tolerance,as well as issues with the existing training model,including...Addressing the core weaknesses in the innovation and entrepreneurship capabilities of vocational college graduates,such as market insight and risk tolerance,as well as issues with the existing training model,including courses that are disconnected from industry,a lack of systematic practical training,and superficial school-enterprise cooperation,this paper constructs a“three-dimensional,four-dimensional”training system.The“three-dimensional”foundational framework encompasses three pillars:curriculum,general education layer,professional integration layer,practical application layer,practice as in three stages:introductory,simulated,and practical,and support including dual mentors,policies,and platforms.The“four-dimensional”differentiated strategies include four implementation pathways:professional differentiation,stage differentiation,addressing capability shortcomings,and school-government-industry collaboration.This system is grounded in theories such as multiple intelligences theory and systems theory,forming a closed-loop process of“theoretical input—practical application—support mechanisms”.Based on the practices of Guangdong Vocational Institute of Public Administration,the paper proposes a competency development pathway tailored by major and stage,which can effectively enhance the innovative and entrepreneurial core competencies of vocational college graduates.This provides a replicable systematic solution for vocational college innovative and entrepreneurial education,supporting vocational education reform and regional economic development.展开更多
BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for as...BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for assessment of bowel disease in children has not been previously described.AIM To determine feasibility of superior mesenteric venous and arterial flow quantitation in pediatric patients using 4D flow MRI.METHODS Nine pediatric patients(7-14 years old,5 male and 4 female)with history or suspicion of bowel pathology,who underwent magnetic resonance(MR)enterography with 4D flow MR protocol from November 2022 to October 2023.Field strength/sequence:3T MRI using 4D flow MR protocol.Flow velocity and peak speed measurements were performed by two diagnostic radiologists placing the region of interest in perpendicular plane to blood flow on each cross section of superior mesenteric artery(SMA)and superior mesenteric vein(SMV)at three predetermined levels.Bland-Altman analysis,showed good agreement of flow velocity and peak speed measurements of SMV and SMA between two readers.RESULTS Mean SMV flow velocity increased from proximal to mid to distal(0.14 L/minute,0.17 L/minute,0.22 L/minute respectively).Mean SMA flow velocity decreased from proximal to mid to distal(0.35 L/minute,0.27 L/minute,0.21 L/minute respectively).Observed agreement was good for flow velocity measurements of SMV(mean bias-0.01 L/minute and 95%limits of agreement,-0.09 to 0.08 L/minute)and SMA(mean bias-0.03 L/minute and 95%limits of agreement,-0.23 to 0.17 L/minute)between two readers.Good agreement for peak speed measurements of SMV(mean bias-1.2 cm/second and 95%limits of agreement,-9.4 to 7.0 cm/second)and SMA(mean bias-3.2 cm/second and 95%limits of agreement,-31.4 to 24.9 cm/second).CONCLUSION Flow quantitation using 4D Flow is feasible to provide hemodynamic information for SMV and SMA in children.展开更多
The article"Assessment of superior mesenteric vascular flow quantitation in children using four-dimensional flow magnetic resonance imaging"suggests to use of four-dimensional(4D)flow magnetic resonance imag...The article"Assessment of superior mesenteric vascular flow quantitation in children using four-dimensional flow magnetic resonance imaging"suggests to use of four-dimensional(4D)flow magnetic resonance imaging(MRI)which is also to measure the blood flow in the superior mesenteric vein(SMV)in pediatric patients over the traditional method.The study focuses on assessing the potential of SMV and superior mesenteric artery(SMA)flow quantification in children utilizing 4D flow MRI.It included 9 pediatric patients aged 18 years and below where 5 were male and 4 were female patients,on whom magnetic resonance enterorrhaphy(MRE)with 4D flow MRI protocol was used.Statistical analysis was performed using MedCalc.Measurements of SMV and SMA between two readers were calculated using Bland-Altman analysis.The results stated that six patients showed no MRE evidence of active inflammatory bowel disease,two patients showed unmarkable bowel appearance on MRI and one patient showed normal MRE without endoscopy performed at the same timeframe.The study utilized available 4D flow MRI sequences in this study aiming to show the feasibility of 4D flow quantitation of SMA and SMV flow in pediatric patients.The study also discovered good agreement for both peak velocity and peak speed measurements of SMA and SMV.展开更多
Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some as...Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.展开更多
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is empl...Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.展开更多
The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations.With the rapid development of data science and scientific tools of m...The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations.With the rapid development of data science and scientific tools of measurement recently,there are numerous data-driven methods devoted to discovering governing laws from data.In this work,a data-driven method is employed to perform the modeling of the projectile based on the Kramers–Moyal formulas.More specifically,the four-dimensional projectile system is assumed as an It?stochastic differential equation.Then the least square method and sparse learning are applied to identify the drift coefficient and diffusion matrix from sample path data,which agree well with the real system.The effectiveness of the data-driven method demonstrates that it will become a powerful tool in extracting governing equations and predicting complex dynamical behaviors of the projectile.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre...To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
文摘Cross-cultural management is often regarded as a discipline of international management focusing on cultural encounters between the organization and the nation-state, and providing tools to tackle cultural difl'erences seen as sources of conflict, friction or misunderstanding. Based on Greet Hofstede' s Cultural Model, this paper attempts to shed some light on effective corporation management through cultural analysis of the difl'erences between China and western countries. The paper puts more emphasis on the impact of cultural compatibility on effective corporation man- agement through the case study of China, Japan, Germany and America. The author argues that managers and employ- ees involved in companies with diverse cultural backgrounds should be integrated and developed into a specific local context through interlocking their cultural identifications and the organizational practices.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
基金This work was funded by the UK Engineering and Physical Sciences Research Council(EP/N029496/1,EP/N029496/2,EP/N029356/1,EP/N029577/1,and EP/N029577/2).
文摘Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations.Moreover,autonomous taxiing is envisioned as a key component in future digitalized airports.However,state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases.The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions.This paper proposes a new approach for generating efficient four-dimensional trajectories(4DTs)on the basis of a high-fidelity aircraft model and gainscheduling control strategy.Working in conjunction with a routing and scheduling algorithm that determines the taxi route,waypoints,and time deadlines,the proposed approach generates fuel-efficient 4DTs in real time,while respecting operational constraints.The proposed approach can be used in two contexts:①as a reactive decision support tool to generate new trajectories that can resolve unprecedented events;and②as an autopilot system for both partial and fully autonomous taxiing.The proposed methodology is realistic and simple to implement.Moreover,simulation studies show that the proposed approach is capable of providing an up to 11%reduction in the fuel consumed during the taxiing of a large Boeing 747-100 jumbo jet.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20598 and 52104107)the"Qinglan Project"of Jiangsu Colleges and Universities,Young Elite Scientists Sponsorship Program of Jiangsu Province(Grant No.TJ-2023-086).
文摘As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.
基金supported by the National Key R&D Program of China(Nos.2021YFA1200404 and 2018YFA0208502)the National Natural Science Foundation of China(Nos.51973227,21988102,and T224100002).
文摘A large amount of progress has achieved in neuroscience,however,there is still a lack of reasonable model for the storage/output(S/O)of life information.The cyclical motion of cardio-and pulmonary-myocyte is a typical process of the life information S/O,while the opening and closing sites of Ca^(2+)ion channels during the motion can form a genetically programmed time-dependent three-dimensional(3D)pattern.Those phenomena indicate a strong correlation of the information S/O model of these myocytes with the time-sequence 3D patterns.Therefore,based on the time-dependent Ca^(2+)fluorescence imaging during the motion of cardio-and pulmonary-myocyte,here we suggest a four-dimensional(4D)code of information S/O model in cell and nervous system.Further from the fact of pulmonary myocyte motion able to be controlled by brain,it is deduced that the 4D code in brain has a role of controlling muscles through a pathway of the central nervous system,peripheral nervous system,neuromuscular junction,and muscle cells.In addition,we also suggested the 4D code of non-innate skill that can be programmed by the learning/training of a long time(~3 years),such as walking,writing,painting,sports,speech,singing,and dancing.Noticeably,this 4D S/O model is reasonable for the ultralow energy consumption of life information transmission.
文摘With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.This paper proposes an innovative fingerprint template protection scheme,which generates key streams through an improved fourdimensional superchaotic system(4CSCS),uses the space-filling property of Hilbert curves to achieve pixel scrambling,and introduces dynamic DNA encoding to improve encryption.Experimental results show that this scheme has a large key space 2^(528),encrypts image information entropy of more than 7.9970,and shows excellent performance in defending against statistical attacks and differential attacks.Compared with existing methods,this scheme has significant advantages in terms of encryption performance and security,and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.
文摘Leesmidt et al present a comprehensive analysis of abdominal vascular flow in children using four-dimensional(4D)flow magnetic resonance imaging(MRI),aim to establish normal hemodynamic values for the abdominal visceral organs and to assess the feasibility of 4D flow MRI(4D-f-MRI)in this population.The researchers performed 4D-f-MRI on 9 pediatric patients with a history or suspi-cion of bowel pathology.Flow velocities were measured in the abdominal aorta and superior and inferior mesenteric arteries.The quality of the 4D-f-MRI images was evaluated,and the agreement between the measured flow velocities and those obtained from Duplex ultrasound was established.However,due to the specific limitations of this work,future studies should address the issues of small sample size and the specific age group design.
基金2024 University-level Innovation and Entrepreneurship Educational Reform Project,“Research on the Innovation and Entrepreneurship Education Model of Higher Vocational Colleges Based on the Theory of Technological Innovation Diffusion”(Project No.:CYJG202414)Academic Year Higher Education Institution Graduate Employment and Entrepreneurship Research Project,“Research on Strategies for Cultivating Innovation and Entrepreneurship Abilities Among Graduates of Higher Vocational Colleges”(Project No.:GJXY2024N083)2024 Guangdong Province General Higher Education Institution Specialized Innovation Project,“Research on a Specialized-Entrepreneurial Integration Talent Development System Guided by Core Competencies in the Era of Artificial Intelligence”(Project No.:2024WTSCX339)。
文摘Addressing the core weaknesses in the innovation and entrepreneurship capabilities of vocational college graduates,such as market insight and risk tolerance,as well as issues with the existing training model,including courses that are disconnected from industry,a lack of systematic practical training,and superficial school-enterprise cooperation,this paper constructs a“three-dimensional,four-dimensional”training system.The“three-dimensional”foundational framework encompasses three pillars:curriculum,general education layer,professional integration layer,practical application layer,practice as in three stages:introductory,simulated,and practical,and support including dual mentors,policies,and platforms.The“four-dimensional”differentiated strategies include four implementation pathways:professional differentiation,stage differentiation,addressing capability shortcomings,and school-government-industry collaboration.This system is grounded in theories such as multiple intelligences theory and systems theory,forming a closed-loop process of“theoretical input—practical application—support mechanisms”.Based on the practices of Guangdong Vocational Institute of Public Administration,the paper proposes a competency development pathway tailored by major and stage,which can effectively enhance the innovative and entrepreneurial core competencies of vocational college graduates.This provides a replicable systematic solution for vocational college innovative and entrepreneurial education,supporting vocational education reform and regional economic development.
文摘BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for assessment of bowel disease in children has not been previously described.AIM To determine feasibility of superior mesenteric venous and arterial flow quantitation in pediatric patients using 4D flow MRI.METHODS Nine pediatric patients(7-14 years old,5 male and 4 female)with history or suspicion of bowel pathology,who underwent magnetic resonance(MR)enterography with 4D flow MR protocol from November 2022 to October 2023.Field strength/sequence:3T MRI using 4D flow MR protocol.Flow velocity and peak speed measurements were performed by two diagnostic radiologists placing the region of interest in perpendicular plane to blood flow on each cross section of superior mesenteric artery(SMA)and superior mesenteric vein(SMV)at three predetermined levels.Bland-Altman analysis,showed good agreement of flow velocity and peak speed measurements of SMV and SMA between two readers.RESULTS Mean SMV flow velocity increased from proximal to mid to distal(0.14 L/minute,0.17 L/minute,0.22 L/minute respectively).Mean SMA flow velocity decreased from proximal to mid to distal(0.35 L/minute,0.27 L/minute,0.21 L/minute respectively).Observed agreement was good for flow velocity measurements of SMV(mean bias-0.01 L/minute and 95%limits of agreement,-0.09 to 0.08 L/minute)and SMA(mean bias-0.03 L/minute and 95%limits of agreement,-0.23 to 0.17 L/minute)between two readers.Good agreement for peak speed measurements of SMV(mean bias-1.2 cm/second and 95%limits of agreement,-9.4 to 7.0 cm/second)and SMA(mean bias-3.2 cm/second and 95%limits of agreement,-31.4 to 24.9 cm/second).CONCLUSION Flow quantitation using 4D Flow is feasible to provide hemodynamic information for SMV and SMA in children.
文摘The article"Assessment of superior mesenteric vascular flow quantitation in children using four-dimensional flow magnetic resonance imaging"suggests to use of four-dimensional(4D)flow magnetic resonance imaging(MRI)which is also to measure the blood flow in the superior mesenteric vein(SMV)in pediatric patients over the traditional method.The study focuses on assessing the potential of SMV and superior mesenteric artery(SMA)flow quantification in children utilizing 4D flow MRI.It included 9 pediatric patients aged 18 years and below where 5 were male and 4 were female patients,on whom magnetic resonance enterorrhaphy(MRE)with 4D flow MRI protocol was used.Statistical analysis was performed using MedCalc.Measurements of SMV and SMA between two readers were calculated using Bland-Altman analysis.The results stated that six patients showed no MRE evidence of active inflammatory bowel disease,two patients showed unmarkable bowel appearance on MRI and one patient showed normal MRE without endoscopy performed at the same timeframe.The study utilized available 4D flow MRI sequences in this study aiming to show the feasibility of 4D flow quantitation of SMA and SMV flow in pediatric patients.The study also discovered good agreement for both peak velocity and peak speed measurements of SMA and SMV.
基金financially supported by the National Natural Science Foundation of China (Grant No. 1177020290)
文摘Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
文摘Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.
基金the Six Talent Peaks Project in Jiangsu Province,China(Grant No.JXQC-002)。
文摘The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations.With the rapid development of data science and scientific tools of measurement recently,there are numerous data-driven methods devoted to discovering governing laws from data.In this work,a data-driven method is employed to perform the modeling of the projectile based on the Kramers–Moyal formulas.More specifically,the four-dimensional projectile system is assumed as an It?stochastic differential equation.Then the least square method and sparse learning are applied to identify the drift coefficient and diffusion matrix from sample path data,which agree well with the real system.The effectiveness of the data-driven method demonstrates that it will become a powerful tool in extracting governing equations and predicting complex dynamical behaviors of the projectile.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金Funded by State Railway Administration Research Project(No.2023JS007)National Natural Science Foundation of China(No.52438002)+1 种基金Research and Development Programs for Science and Technology of China Railways Corporation(No.J2023G003)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.