期刊文献+
共找到31,921篇文章
< 1 2 250 >
每页显示 20 50 100
Discrete and Topological Correspondence Theory for Modal MeetImplication Logic and Modal MeetSemilattice Logic in Filter Semantics
1
作者 Fei Liang Zhiguang Zhao 《逻辑学研究》 2025年第3期25-66,共42页
In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided i... In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided in[21].The special features of the present paper include the following three points:the first one is that the semantic structure used is based on a semilattice rather than an ordinary partial order,the second one is that the propositional vari-ables are interpreted as filters rather than upsets,and the nominals,which are the“first-order counterparts of propositional variables,are interpreted as principal filters rather than principal upsets;the third one is that in topological correspondence theory,the collection of admissi-ble valuations is not closed under taking disjunction,which makes the proof of the topological Ackermann 1emma different from existing settings. 展开更多
关键词 topological correspondence theory SEMILATTICE modal meet implication logic modal meet semilattice logic discrete correspondence theory semantic structure propositional variables filter semantics
在线阅读 下载PDF
Using ontology and rules to retrieve the semantics of disaster remote sensing data 被引量:1
2
作者 DONG Yumin LI Ziyang +1 位作者 LI Xuesong LI Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1211-1218,共8页
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster... Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency. 展开更多
关键词 remote sensing data DISASTER ONTOLOGY semantic reasoning
在线阅读 下载PDF
Enhancing Deep Learning Semantics:The Diffusion Sampling and Label-Driven Co-Attention Approach
3
作者 ChunhuaWang Wenqian Shang +1 位作者 Tong Yi Haibin Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期1939-1956,共18页
The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-atten... The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods. 展开更多
关键词 semantic representation sampling attention label-driven co-attention attention mechanisms
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
4
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
5
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 Visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
LiDAR-Visual SLAM with Integrated Semantic and Texture Information for Enhanced Ecological Monitoring Vehicle Localization
6
作者 Yiqing Lu Liutao Zhao Qiankun Zhao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1401-1416,共16页
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ... Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts. 展开更多
关键词 LiDAR-Visual simultaneous localization and mapping integrated semantic texture information
在线阅读 下载PDF
Research on Determining the Weights of Key Influencing Factors Based on Multi-Grained Binary Semantics
7
作者 Yun Li Weizhe Shu 《Journal of Electronic Research and Application》 2024年第6期157-161,共5页
To effectively address the complexity of the environment,information uncertainty,and variability among decision-makers in the event of an enterprise emergency,a multi-granularity binary semantic-based emergency decisi... To effectively address the complexity of the environment,information uncertainty,and variability among decision-makers in the event of an enterprise emergency,a multi-granularity binary semantic-based emergency decision-making method is proposed.Decision-makers use preferred multi-granularity non-uniform linguistic scales combined with binary semantics to represent the evaluation information of key influencing factors.Secondly,the weights were determined based on the proposed method.Finally,the proposed method’s effectiveness is validated using a case study of a fire incident in a chemical company. 展开更多
关键词 Multi-grained binary semantics EMERGENCY Key influencing factor
在线阅读 下载PDF
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
8
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
An Analysis of OpenSeeD for Video Semantic Labeling
9
作者 Jenny Zhu 《Journal of Computer and Communications》 2025年第1期59-71,共13页
Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial fo... Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial for scene understanding. However, a challenge many semantic learning models face is the lack of data. Existing video datasets are limited to short, low-resolution videos that are not representative of real-world examples. Thus, one of our key contributions is a customized semantic segmentation version of the Walking Tours Dataset that features hour-long, high-resolution, real-world data from tours of different cities. Additionally, we evaluate the performance of open-vocabulary, semantic model OpenSeeD on our own custom dataset and discuss future implications. 展开更多
关键词 semantic Segmentation Detection LABELING OpenSeeD Open-Vocabulary Walking Tours Dataset VIDEOS
在线阅读 下载PDF
Ten Challenges in Semantic Communications
10
作者 Qin Zhijin Ying Jingkai +4 位作者 Xin Gangtao Fan Pingyi Feng Wei Ge Ning Tao Xiaoming 《China Communications》 2025年第6期24-43,共20页
In recent years,deep learning-based semantic communications have shown great potential to enhance the performance of communication systems.This has led to the belief that semantic communications represent a breakthrou... In recent years,deep learning-based semantic communications have shown great potential to enhance the performance of communication systems.This has led to the belief that semantic communications represent a breakthrough beyond the Shannon paradigm and will play an essential role in future communications.To narrow the gap between current research and future vision,after an overview of semantic communications,this article presents and discusses ten fundamental and critical challenges in today’s semantic communication field.These challenges are divided into theory foundation,system design,and practical implementation.Challenges related to the theory foundation including semantic capacity,entropy,and rate-distortion are discussed first.Then,the system design challenges encompassing architecture,knowledge base,joint semantic-channel coding,tailored transmission scheme,and impairment are posed.The last two challenges associated with the practical implementation lie in cross-layer optimization for networks and standardization.For each challenge,efforts to date and thoughtful insights are provided. 展开更多
关键词 cross-layer optimization semantic communication semantic theory STANDARDIZATION
在线阅读 下载PDF
Entropy-Bottleneck-Based Privacy Protection Mechanism for Semantic Communication
11
作者 Kaiyang Han Xiaoqiang Jia +3 位作者 Yangfei Lin Tsutomu Yoshinaga Yalong Li Jiale Wu 《Computers, Materials & Continua》 2025年第5期2971-2988,共18页
With the rapid development of artificial intelligence and the Internet of Things,along with the growing demand for privacy-preserving transmission,the need for efficient and secure communication systems has become inc... With the rapid development of artificial intelligence and the Internet of Things,along with the growing demand for privacy-preserving transmission,the need for efficient and secure communication systems has become increasingly urgent.Traditional communication methods transmit data at the bit level without considering its semantic significance,leading to redundant transmission overhead and reduced efficiency.Semantic communication addresses this issue by extracting and transmitting only the mostmeaningful semantic information,thereby improving bandwidth efficiency.However,despite reducing the volume of data,it remains vulnerable to privacy risks,as semantic features may still expose sensitive information.To address this,we propose an entropy-bottleneck-based privacy protection mechanism for semantic communication.Our approach uses semantic segmentation to partition images into regions of interest(ROI)and regions of non-interest(RONI)based on the receiver’s needs,enabling differentiated semantic transmission.By focusing transmission on ROIs,bandwidth usage is optimized,and non-essential data is minimized.The entropy bottleneck model probabilistically encodes the semantic information into a compact bit stream,reducing correlation between the transmitted content and the original data,thus enhancing privacy protection.The proposed framework is systematically evaluated in terms of compression efficiency,semantic fidelity,and privacy preservation.Through comparative experiments with traditional and state-of-the-art methods,we demonstrate that the approach significantly reduces data transmission,maintains the quality of semantically important regions,and ensures robust privacy protection. 展开更多
关键词 semantic communication privacy protection semantic segmentation entropy-based compression
在线阅读 下载PDF
Blockchain-based knowledge-aware semantic communications for remote driving image transmission
12
作者 Yangfei Lin Tutomu Murase +3 位作者 Yusheng Ji Wugedele Bao Lei Zhong Jie Li 《Digital Communications and Networks》 2025年第2期317-325,共9页
Remote driving,an emergent technology enabling remote operations of vehicles,presents a significant challenge in transmitting large volumes of image data to a central server.This requirement outpaces the capacity of t... Remote driving,an emergent technology enabling remote operations of vehicles,presents a significant challenge in transmitting large volumes of image data to a central server.This requirement outpaces the capacity of traditional communication methods.To tackle this,we propose a novel framework using semantic communications,through a region of interest semantic segmentation method,to reduce the communication costs by transmitting meaningful semantic information rather than bit-wise data.To solve the knowledge base inconsistencies inherent in semantic communications,we introduce a blockchain-based edge-assisted system for managing diverse and geographically varied semantic segmentation knowledge bases.This system not only ensures the security of data through the tamper-resistant nature of blockchain but also leverages edge computing for efficient management.Additionally,the implementation of blockchain sharding handles differentiated knowledge bases for various tasks,thus boosting overall blockchain efficiency.Experimental results show a great reduction in latency by sharding and an increase in model accuracy,confirming our framework's effectiveness. 展开更多
关键词 semantic communication Remote driving semantic segmentation Blockchain Knowledge base management
在线阅读 下载PDF
Facial Video Semantic Coding for Semantic Communication
13
作者 Du Qiyuan Duan Yiping Tao Xiaoming 《China Communications》 2025年第6期83-100,共18页
Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semant... Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings. 展开更多
关键词 facial video semantic coding semantic communications talking head video compression
在线阅读 下载PDF
CAMSNet:Few-Shot Semantic Segmentation via Class Activation Map and Self-Cross Attention Block
14
作者 Jingjing Yan Xuyang Zhuang +2 位作者 Xuezhuan Zhao Xiaoyan Shao Jiaqi Han 《Computers, Materials & Continua》 2025年第3期5363-5386,共24页
The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set... The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art. 展开更多
关键词 Few-shot semantic segmentation semantic segmentation meta learning
在线阅读 下载PDF
A Semantic Evaluation Framework for Medical Report Generation Using Large Language Models
15
作者 Haider Ali Rashadul Islam Sumon +2 位作者 Abdul Rehman Khalid Kounen Fathima Hee Cheol Kim 《Computers, Materials & Continua》 2025年第9期5445-5462,共18页
Artificial intelligence is reshaping radiology by enabling automated report generation,yet evaluating the clinical accuracy and relevance of these reports is a challenging task,as traditional natural language generati... Artificial intelligence is reshaping radiology by enabling automated report generation,yet evaluating the clinical accuracy and relevance of these reports is a challenging task,as traditional natural language generation metrics like BLEU and ROUGE prioritize lexical overlap over clinical relevance.To address this gap,we propose a novel semantic assessment framework for evaluating the accuracy of artificial intelligence-generated radiology reports against ground truth references.We trained 5229 image–report pairs from the Indiana University chest X-ray dataset on the R2GenRL model and generated a benchmark dataset on test data from the Indiana University chest X-ray and MIMIC-CXR datasets.These datasets were selected for their public availability,large scale,and comprehensive coverage of diverse clinical cases in chest radiography,enabling robust evaluation and comparison with prior work.Results demonstrate that the Mistral model,particularly with task-oriented prompting,achieves superior performance(up to 91.9%accuracy),surpassing other models and closely aligning with established metrics like BERTScore-F1(88.1%)and CLIP-Score(88.7%).Statistical analyses,including paired t-tests(p<0.01)and analysis of variance(p<0.05),confirm significant improvements driven by structured prompting.Failure case analysis reveals limitations,such as over-reliance on lexical similarity,underscoring the need for domain-specific fine-tuning.This framework advances the evaluation of artificial intelligence-driven(AI-driven)radiology report generation,offering a robust,clinically relevant metric for assessing semantic accuracy and paving the way for more reliable automated systems in medical imaging. 展开更多
关键词 semantic assessment AI-generated radiology reports large language models prompt engineering semantic score evaluation
暂未订购
Content-aware robust semantic transmission of images over wireless channels with GANs
16
作者 Xuyang Chen Daquan Feng +3 位作者 Qi He Yao Sun Gaojie Chen Xiang-Gen Xia 《Digital Communications and Networks》 2025年第4期1204-1212,共9页
Semantic Communication(SemCom)can significantly reduce the transmitted data volume and keep robustness.Task-oriented SemCom of images aims to convey the implicit meaning of source messages correctly,rather than achiev... Semantic Communication(SemCom)can significantly reduce the transmitted data volume and keep robustness.Task-oriented SemCom of images aims to convey the implicit meaning of source messages correctly,rather than achieving precise bit-by-bit reconstruction.Existing image SemCom systems directly perform semantic encoding and decoding on the entire image,which has not considered the correlation between image content and downstream tasks or the adaptability to channel noise.To this end,we propose a content-aware robust SemCom framework for image transmission based on Generative Adversarial Networks(GANs).Specifically,the accurate semantics of the image are extracted by the semantic encoder,and divided into two parts for different downstream tasks:Regions of Interest(ROI)and Regions of Non-Interest(RONI).By reducing the quantization accuracy of RONI,the amount of transmitted data volume is reduced significantly.During the transmission process of semantics,a Signal-to-Noise Ratio(SNR)is randomly initialized,enabling the model to learn the average noise distribution.The experimental results demonstrate that by reducing the quantization level of RONI,transmitted data volume is reduced up to 60.53%compared to using globally consistent quantization while maintaining comparable performance to existing methods in downstream semantic segmentation tasks.Moreover,our model exhibits increased robustness with variable SNRs. 展开更多
关键词 semantic communication GANs Image transmission ROI
在线阅读 下载PDF
Semantic Malware Classification Using Artificial Intelligence Techniques
17
作者 Eliel Martins Javier Bermejo Higuera +3 位作者 Ricardo Sant’Ana Juan Ramón Bermejo Higuera Juan Antonio Sicilia Montalvo Diego Piedrahita Castillo 《Computer Modeling in Engineering & Sciences》 2025年第3期3031-3067,共37页
The growing threat of malware,particularly in the Portable Executable(PE)format,demands more effective methods for detection and classification.Machine learning-based approaches exhibit their potential but often negle... The growing threat of malware,particularly in the Portable Executable(PE)format,demands more effective methods for detection and classification.Machine learning-based approaches exhibit their potential but often neglect semantic segmentation of malware files that can improve classification performance.This research applies deep learning to malware detection,using Convolutional Neural Network(CNN)architectures adapted to work with semantically extracted data to classify malware into malware families.Starting from the Malconv model,this study introduces modifications to adapt it to multi-classification tasks and improve its performance.It proposes a new innovative method that focuses on byte extraction from Portable Executable(PE)malware files based on their semantic location,resulting in higher accuracy in malware classification than traditional methods using full-byte sequences.This novel approach evaluates the importance of each semantic segment to improve classification accuracy.The results revealed that the header segment of PE files provides the most valuable information for malware identification,outperforming the other sections,and achieving an average classification accuracy of 99.54%.The above reaffirms the effectiveness of the semantic segmentation approach and highlights the critical role header data plays in improving malware detection and classification accuracy. 展开更多
关键词 MALWARE portable executable semantIC convolutional neural networks
在线阅读 下载PDF
Bilateral Dual-Residual Real-Time Semantic Segmentation Network
18
作者 Shijie Xiang Dong Zhou +1 位作者 Dan Tian Zihao Wang 《Computers, Materials & Continua》 2025年第4期497-515,共19页
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation... Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance. 展开更多
关键词 REAL-TIME residual structure semantic segmentation feature fusion
在线阅读 下载PDF
Optimized algorithm for image semantic segmentation compression algorithm in video surveillance scenarios
19
作者 ZHANG Yangmei ZHANG Xishan +1 位作者 ZHANG Shuo LI Jintao 《High Technology Letters》 2025年第2期194-203,共10页
In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant o... In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant objects such as background elements are often encoded due to environmental disturbances,resulting in the wastage of computational resources.Existing research on video coding efficiency optimization primarily focuses on optimizing encoding units during intra-frame or inter frame prediction after the generation of coding units,neglecting the optimization of video images before coding unit generation.To address this challenge,This work proposes an image semantic segmentation compression algorithm based on macroblock encoding,called image semantic segmentation compression algorithm based on macroblock encoding(ISSC-ME),which consists of three modules.(1)The semantic label generation module generates interesting object labels using a grid-based approach to reduce redundant coding of consecutive frames.(2)The image segmentation network module generates a semantic segmentation image using U-Net.(3)The macroblock coding module,is a block segmentation-based video encoding and decoding algorithm used to compress images and improve video transmission efficiency.Experimental results show that the proposed image semantic segmentation optimization algorithm can reduce the computational costs,and improve the overall accuracy by 1.00%and the mean intersection over union(IoU)by 1.20%.In addition,the proposed compression algorithm utilizes macroblock fusion,resulting in the image compression rate achieving 80.64%.It has been proven that the proposed algorithm greatly reduces data storage and transmission,and enables fast image compression processing at the millisecond level. 展开更多
关键词 macroblock encoding semantic segmentation segmentation compression
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部