The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for fourdimensional system is studied in this paper. First, the analytical relations between the circuit parame...The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for fourdimensional system is studied in this paper. First, the analytical relations between the circuit parameters and the eigenvalues of the system are established, and therefore all the circuit parameters can be determined explicitly by any given set of eigenvalues. Then, the eigenvalue space of the circuit is investigated in two cases by the nonlinear elements used. According to the types of the eigenvalues, some novel hyperchaotic attractors are presented. Further, the dynamic behaviours of the circuit are studied by the bifurcation diagrams and the Lyapunov spectra of the eigenvalues.展开更多
With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.Th...With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.This paper proposes an innovative fingerprint template protection scheme,which generates key streams through an improved fourdimensional superchaotic system(4CSCS),uses the space-filling property of Hilbert curves to achieve pixel scrambling,and introduces dynamic DNA encoding to improve encryption.Experimental results show that this scheme has a large key space 2^(528),encrypts image information entropy of more than 7.9970,and shows excellent performance in defending against statistical attacks and differential attacks.Compared with existing methods,this scheme has significant advantages in terms of encryption performance and security,and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.展开更多
Leesmidt et al present a comprehensive analysis of abdominal vascular flow in children using four-dimensional(4D)flow magnetic resonance imaging(MRI),aim to establish normal hemodynamic values for the abdominal viscer...Leesmidt et al present a comprehensive analysis of abdominal vascular flow in children using four-dimensional(4D)flow magnetic resonance imaging(MRI),aim to establish normal hemodynamic values for the abdominal visceral organs and to assess the feasibility of 4D flow MRI(4D-f-MRI)in this population.The researchers performed 4D-f-MRI on 9 pediatric patients with a history or suspi-cion of bowel pathology.Flow velocities were measured in the abdominal aorta and superior and inferior mesenteric arteries.The quality of the 4D-f-MRI images was evaluated,and the agreement between the measured flow velocities and those obtained from Duplex ultrasound was established.However,due to the specific limitations of this work,future studies should address the issues of small sample size and the specific age group design.展开更多
Addressing the core weaknesses in the innovation and entrepreneurship capabilities of vocational college graduates,such as market insight and risk tolerance,as well as issues with the existing training model,including...Addressing the core weaknesses in the innovation and entrepreneurship capabilities of vocational college graduates,such as market insight and risk tolerance,as well as issues with the existing training model,including courses that are disconnected from industry,a lack of systematic practical training,and superficial school-enterprise cooperation,this paper constructs a“three-dimensional,four-dimensional”training system.The“three-dimensional”foundational framework encompasses three pillars:curriculum,general education layer,professional integration layer,practical application layer,practice as in three stages:introductory,simulated,and practical,and support including dual mentors,policies,and platforms.The“four-dimensional”differentiated strategies include four implementation pathways:professional differentiation,stage differentiation,addressing capability shortcomings,and school-government-industry collaboration.This system is grounded in theories such as multiple intelligences theory and systems theory,forming a closed-loop process of“theoretical input—practical application—support mechanisms”.Based on the practices of Guangdong Vocational Institute of Public Administration,the paper proposes a competency development pathway tailored by major and stage,which can effectively enhance the innovative and entrepreneurial core competencies of vocational college graduates.This provides a replicable systematic solution for vocational college innovative and entrepreneurial education,supporting vocational education reform and regional economic development.展开更多
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ...As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.展开更多
BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for as...BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for assessment of bowel disease in children has not been previously described.AIM To determine feasibility of superior mesenteric venous and arterial flow quantitation in pediatric patients using 4D flow MRI.METHODS Nine pediatric patients(7-14 years old,5 male and 4 female)with history or suspicion of bowel pathology,who underwent magnetic resonance(MR)enterography with 4D flow MR protocol from November 2022 to October 2023.Field strength/sequence:3T MRI using 4D flow MR protocol.Flow velocity and peak speed measurements were performed by two diagnostic radiologists placing the region of interest in perpendicular plane to blood flow on each cross section of superior mesenteric artery(SMA)and superior mesenteric vein(SMV)at three predetermined levels.Bland-Altman analysis,showed good agreement of flow velocity and peak speed measurements of SMV and SMA between two readers.RESULTS Mean SMV flow velocity increased from proximal to mid to distal(0.14 L/minute,0.17 L/minute,0.22 L/minute respectively).Mean SMA flow velocity decreased from proximal to mid to distal(0.35 L/minute,0.27 L/minute,0.21 L/minute respectively).Observed agreement was good for flow velocity measurements of SMV(mean bias-0.01 L/minute and 95%limits of agreement,-0.09 to 0.08 L/minute)and SMA(mean bias-0.03 L/minute and 95%limits of agreement,-0.23 to 0.17 L/minute)between two readers.Good agreement for peak speed measurements of SMV(mean bias-1.2 cm/second and 95%limits of agreement,-9.4 to 7.0 cm/second)and SMA(mean bias-3.2 cm/second and 95%limits of agreement,-31.4 to 24.9 cm/second).CONCLUSION Flow quantitation using 4D Flow is feasible to provide hemodynamic information for SMV and SMA in children.展开更多
The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).A...The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.展开更多
The article"Assessment of superior mesenteric vascular flow quantitation in children using four-dimensional flow magnetic resonance imaging"suggests to use of four-dimensional(4D)flow magnetic resonance imag...The article"Assessment of superior mesenteric vascular flow quantitation in children using four-dimensional flow magnetic resonance imaging"suggests to use of four-dimensional(4D)flow magnetic resonance imaging(MRI)which is also to measure the blood flow in the superior mesenteric vein(SMV)in pediatric patients over the traditional method.The study focuses on assessing the potential of SMV and superior mesenteric artery(SMA)flow quantification in children utilizing 4D flow MRI.It included 9 pediatric patients aged 18 years and below where 5 were male and 4 were female patients,on whom magnetic resonance enterorrhaphy(MRE)with 4D flow MRI protocol was used.Statistical analysis was performed using MedCalc.Measurements of SMV and SMA between two readers were calculated using Bland-Altman analysis.The results stated that six patients showed no MRE evidence of active inflammatory bowel disease,two patients showed unmarkable bowel appearance on MRI and one patient showed normal MRE without endoscopy performed at the same timeframe.The study utilized available 4D flow MRI sequences in this study aiming to show the feasibility of 4D flow quantitation of SMA and SMV flow in pediatric patients.The study also discovered good agreement for both peak velocity and peak speed measurements of SMA and SMV.展开更多
In this article,we conduct a study on mixed quasi-martingale Hardy spaces that are defined by means of the mixed L_(p)-norm.By utilizing Doob’s inequalities,we explore the atomic decomposition and quasi-martingale in...In this article,we conduct a study on mixed quasi-martingale Hardy spaces that are defined by means of the mixed L_(p)-norm.By utilizing Doob’s inequalities,we explore the atomic decomposition and quasi-martingale inequalities of mixed quasi-martingale Hardy spaces.Moreover,we furnish sufficient conditions for the boundedness ofσ-sublinear operators in these spaces.These findings extend the existing conclusions regarding mixed quasi-martingale Hardy spaces defined with the help of the mixed L_(p)-norm.展开更多
In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sph...In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.展开更多
随着全球供应链的日益复杂化和不确定性增加,提升供应链韧性成为我国面临的重要挑战。本文基于Web of Science数据库和知网数据库,结合可视化分析方法,对2013—2024年国内外供应链韧性领域相关文献进行对比分析,研究结果表明:(1)国内研...随着全球供应链的日益复杂化和不确定性增加,提升供应链韧性成为我国面临的重要挑战。本文基于Web of Science数据库和知网数据库,结合可视化分析方法,对2013—2024年国内外供应链韧性领域相关文献进行对比分析,研究结果表明:(1)国内研究起步晚于国外,且发文量少于国外。国外整体合作密切程度强于国内,国内、国外均未形成核心作者群。(2)国内相关研究主要集中在技术创新对供应链韧性的影响、供应链韧性战略以及供应链韧性评价等方面;国外相关研究主要集中在供应链韧性内涵、供应链韧性作用机制、供应链韧性评估模型等方面。(3)国内研究演进脉络分为两个阶段,国外研究演进脉络分为三个阶段。(4)在研究前沿方面,国内现阶段聚焦数字化方面,反映了产业升级需求;国外现阶段侧重于数字化与地缘政治方面。展开更多
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
The rectifier filter circuit is widely applied.However,it is difficult to gain a global solution for the optimization design.4-D visual analysis and design optimization of the single-phase uncontrolled bridge rectifie...The rectifier filter circuit is widely applied.However,it is difficult to gain a global solution for the optimization design.4-D visual analysis and design optimization of the single-phase uncontrolled bridge rectifier with an LC filter are presented in this paper.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the meso...A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.展开更多
Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential...Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.展开更多
Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport i...Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations.Moreover,autonomous taxiing is envisioned as a key component in future digitalized airports.However,state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases.The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions.This paper proposes a new approach for generating efficient four-dimensional trajectories(4DTs)on the basis of a high-fidelity aircraft model and gainscheduling control strategy.Working in conjunction with a routing and scheduling algorithm that determines the taxi route,waypoints,and time deadlines,the proposed approach generates fuel-efficient 4DTs in real time,while respecting operational constraints.The proposed approach can be used in two contexts:①as a reactive decision support tool to generate new trajectories that can resolve unprecedented events;and②as an autopilot system for both partial and fully autonomous taxiing.The proposed methodology is realistic and simple to implement.Moreover,simulation studies show that the proposed approach is capable of providing an up to 11%reduction in the fuel consumed during the taxiing of a large Boeing 747-100 jumbo jet.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 50877007)
文摘The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for fourdimensional system is studied in this paper. First, the analytical relations between the circuit parameters and the eigenvalues of the system are established, and therefore all the circuit parameters can be determined explicitly by any given set of eigenvalues. Then, the eigenvalue space of the circuit is investigated in two cases by the nonlinear elements used. According to the types of the eigenvalues, some novel hyperchaotic attractors are presented. Further, the dynamic behaviours of the circuit are studied by the bifurcation diagrams and the Lyapunov spectra of the eigenvalues.
文摘With the rapid development of Internet of things technology,the efficiency of data transmission between devices has been significantly improved.However,the open network environment also poses serious security risks.This paper proposes an innovative fingerprint template protection scheme,which generates key streams through an improved fourdimensional superchaotic system(4CSCS),uses the space-filling property of Hilbert curves to achieve pixel scrambling,and introduces dynamic DNA encoding to improve encryption.Experimental results show that this scheme has a large key space 2^(528),encrypts image information entropy of more than 7.9970,and shows excellent performance in defending against statistical attacks and differential attacks.Compared with existing methods,this scheme has significant advantages in terms of encryption performance and security,and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.
文摘Leesmidt et al present a comprehensive analysis of abdominal vascular flow in children using four-dimensional(4D)flow magnetic resonance imaging(MRI),aim to establish normal hemodynamic values for the abdominal visceral organs and to assess the feasibility of 4D flow MRI(4D-f-MRI)in this population.The researchers performed 4D-f-MRI on 9 pediatric patients with a history or suspi-cion of bowel pathology.Flow velocities were measured in the abdominal aorta and superior and inferior mesenteric arteries.The quality of the 4D-f-MRI images was evaluated,and the agreement between the measured flow velocities and those obtained from Duplex ultrasound was established.However,due to the specific limitations of this work,future studies should address the issues of small sample size and the specific age group design.
基金2024 University-level Innovation and Entrepreneurship Educational Reform Project,“Research on the Innovation and Entrepreneurship Education Model of Higher Vocational Colleges Based on the Theory of Technological Innovation Diffusion”(Project No.:CYJG202414)Academic Year Higher Education Institution Graduate Employment and Entrepreneurship Research Project,“Research on Strategies for Cultivating Innovation and Entrepreneurship Abilities Among Graduates of Higher Vocational Colleges”(Project No.:GJXY2024N083)2024 Guangdong Province General Higher Education Institution Specialized Innovation Project,“Research on a Specialized-Entrepreneurial Integration Talent Development System Guided by Core Competencies in the Era of Artificial Intelligence”(Project No.:2024WTSCX339)。
文摘Addressing the core weaknesses in the innovation and entrepreneurship capabilities of vocational college graduates,such as market insight and risk tolerance,as well as issues with the existing training model,including courses that are disconnected from industry,a lack of systematic practical training,and superficial school-enterprise cooperation,this paper constructs a“three-dimensional,four-dimensional”training system.The“three-dimensional”foundational framework encompasses three pillars:curriculum,general education layer,professional integration layer,practical application layer,practice as in three stages:introductory,simulated,and practical,and support including dual mentors,policies,and platforms.The“four-dimensional”differentiated strategies include four implementation pathways:professional differentiation,stage differentiation,addressing capability shortcomings,and school-government-industry collaboration.This system is grounded in theories such as multiple intelligences theory and systems theory,forming a closed-loop process of“theoretical input—practical application—support mechanisms”.Based on the practices of Guangdong Vocational Institute of Public Administration,the paper proposes a competency development pathway tailored by major and stage,which can effectively enhance the innovative and entrepreneurial core competencies of vocational college graduates.This provides a replicable systematic solution for vocational college innovative and entrepreneurial education,supporting vocational education reform and regional economic development.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20598 and 52104107)the"Qinglan Project"of Jiangsu Colleges and Universities,Young Elite Scientists Sponsorship Program of Jiangsu Province(Grant No.TJ-2023-086).
文摘As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.
文摘BACKGROUND Four-dimensional(4D)flow magnetic resonance imaging(MRI)is used as a noninvasive modality for assessing hemodynamic information with neurovascular and body applications.The application of 4D flow MRI for assessment of bowel disease in children has not been previously described.AIM To determine feasibility of superior mesenteric venous and arterial flow quantitation in pediatric patients using 4D flow MRI.METHODS Nine pediatric patients(7-14 years old,5 male and 4 female)with history or suspicion of bowel pathology,who underwent magnetic resonance(MR)enterography with 4D flow MR protocol from November 2022 to October 2023.Field strength/sequence:3T MRI using 4D flow MR protocol.Flow velocity and peak speed measurements were performed by two diagnostic radiologists placing the region of interest in perpendicular plane to blood flow on each cross section of superior mesenteric artery(SMA)and superior mesenteric vein(SMV)at three predetermined levels.Bland-Altman analysis,showed good agreement of flow velocity and peak speed measurements of SMV and SMA between two readers.RESULTS Mean SMV flow velocity increased from proximal to mid to distal(0.14 L/minute,0.17 L/minute,0.22 L/minute respectively).Mean SMA flow velocity decreased from proximal to mid to distal(0.35 L/minute,0.27 L/minute,0.21 L/minute respectively).Observed agreement was good for flow velocity measurements of SMV(mean bias-0.01 L/minute and 95%limits of agreement,-0.09 to 0.08 L/minute)and SMA(mean bias-0.03 L/minute and 95%limits of agreement,-0.23 to 0.17 L/minute)between two readers.Good agreement for peak speed measurements of SMV(mean bias-1.2 cm/second and 95%limits of agreement,-9.4 to 7.0 cm/second)and SMA(mean bias-3.2 cm/second and 95%limits of agreement,-31.4 to 24.9 cm/second).CONCLUSION Flow quantitation using 4D Flow is feasible to provide hemodynamic information for SMV and SMA in children.
基金The National Key Research and Development Program of China under contract Nos 2017YFC1501803 and2018YFC1506903the National Natural Science Foundation of China under contract Nos 91730304,41475021 and 41575026
文摘The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.
文摘The article"Assessment of superior mesenteric vascular flow quantitation in children using four-dimensional flow magnetic resonance imaging"suggests to use of four-dimensional(4D)flow magnetic resonance imaging(MRI)which is also to measure the blood flow in the superior mesenteric vein(SMV)in pediatric patients over the traditional method.The study focuses on assessing the potential of SMV and superior mesenteric artery(SMA)flow quantification in children utilizing 4D flow MRI.It included 9 pediatric patients aged 18 years and below where 5 were male and 4 were female patients,on whom magnetic resonance enterorrhaphy(MRE)with 4D flow MRI protocol was used.Statistical analysis was performed using MedCalc.Measurements of SMV and SMA between two readers were calculated using Bland-Altman analysis.The results stated that six patients showed no MRE evidence of active inflammatory bowel disease,two patients showed unmarkable bowel appearance on MRI and one patient showed normal MRE without endoscopy performed at the same timeframe.The study utilized available 4D flow MRI sequences in this study aiming to show the feasibility of 4D flow quantitation of SMA and SMV flow in pediatric patients.The study also discovered good agreement for both peak velocity and peak speed measurements of SMA and SMV.
基金Supported by the National Natural Science Foundation of China(11871195)。
文摘In this article,we conduct a study on mixed quasi-martingale Hardy spaces that are defined by means of the mixed L_(p)-norm.By utilizing Doob’s inequalities,we explore the atomic decomposition and quasi-martingale inequalities of mixed quasi-martingale Hardy spaces.Moreover,we furnish sufficient conditions for the boundedness ofσ-sublinear operators in these spaces.These findings extend the existing conclusions regarding mixed quasi-martingale Hardy spaces defined with the help of the mixed L_(p)-norm.
文摘In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.
文摘随着全球供应链的日益复杂化和不确定性增加,提升供应链韧性成为我国面临的重要挑战。本文基于Web of Science数据库和知网数据库,结合可视化分析方法,对2013—2024年国内外供应链韧性领域相关文献进行对比分析,研究结果表明:(1)国内研究起步晚于国外,且发文量少于国外。国外整体合作密切程度强于国内,国内、国外均未形成核心作者群。(2)国内相关研究主要集中在技术创新对供应链韧性的影响、供应链韧性战略以及供应链韧性评价等方面;国外相关研究主要集中在供应链韧性内涵、供应链韧性作用机制、供应链韧性评估模型等方面。(3)国内研究演进脉络分为两个阶段,国外研究演进脉络分为三个阶段。(4)在研究前沿方面,国内现阶段聚焦数字化方面,反映了产业升级需求;国外现阶段侧重于数字化与地缘政治方面。
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
文摘The rectifier filter circuit is widely applied.However,it is difficult to gain a global solution for the optimization design.4-D visual analysis and design optimization of the single-phase uncontrolled bridge rectifier with an LC filter are presented in this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
文摘A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.
文摘Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.
基金This work was funded by the UK Engineering and Physical Sciences Research Council(EP/N029496/1,EP/N029496/2,EP/N029356/1,EP/N029577/1,and EP/N029577/2).
文摘Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations.Moreover,autonomous taxiing is envisioned as a key component in future digitalized airports.However,state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases.The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions.This paper proposes a new approach for generating efficient four-dimensional trajectories(4DTs)on the basis of a high-fidelity aircraft model and gainscheduling control strategy.Working in conjunction with a routing and scheduling algorithm that determines the taxi route,waypoints,and time deadlines,the proposed approach generates fuel-efficient 4DTs in real time,while respecting operational constraints.The proposed approach can be used in two contexts:①as a reactive decision support tool to generate new trajectories that can resolve unprecedented events;and②as an autopilot system for both partial and fully autonomous taxiing.The proposed methodology is realistic and simple to implement.Moreover,simulation studies show that the proposed approach is capable of providing an up to 11%reduction in the fuel consumed during the taxiing of a large Boeing 747-100 jumbo jet.