The purpose of this research is to show that Foaucault pendulum as well as other Coriolis effects, which are normally studied in a rotating coordinate system, can also be analyzed in a fixed reference frame. To this e...The purpose of this research is to show that Foaucault pendulum as well as other Coriolis effects, which are normally studied in a rotating coordinate system, can also be analyzed in a fixed reference frame. To this end, Foucault pendulum and other Coriolis effects are studied in inertial reference frames. The approach is simple, yet rigorous, and the results are exactly the same as those obtained in non-inertial reference frames but without resorting to some of the assumptions that are needed in rotating coordinate systems.展开更多
The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame and provides a closed form vector solution determined by vector and matrix calculus. The solution is determined through ...The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame and provides a closed form vector solution determined by vector and matrix calculus. The solution is determined through vector and matrix calculus in both cases, for both forms of the law of motion (for the Foucault Pendulum Problem and its “Reduced Form”). A complex vector which transforms the motion equation in a first order differential equation with constant coefficients is used. Also, a novel kinematic interpretation of the Foucault Pendulum motion is given.展开更多
文摘The purpose of this research is to show that Foaucault pendulum as well as other Coriolis effects, which are normally studied in a rotating coordinate system, can also be analyzed in a fixed reference frame. To this end, Foucault pendulum and other Coriolis effects are studied in inertial reference frames. The approach is simple, yet rigorous, and the results are exactly the same as those obtained in non-inertial reference frames but without resorting to some of the assumptions that are needed in rotating coordinate systems.
文摘The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame and provides a closed form vector solution determined by vector and matrix calculus. The solution is determined through vector and matrix calculus in both cases, for both forms of the law of motion (for the Foucault Pendulum Problem and its “Reduced Form”). A complex vector which transforms the motion equation in a first order differential equation with constant coefficients is used. Also, a novel kinematic interpretation of the Foucault Pendulum motion is given.