期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem—Part II. A New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) 被引量:2
1
作者 Alexey Stakhov Samuil Aranson 《Applied Mathematics》 2011年第2期181-188,共8页
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ... This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements. 展开更多
关键词 Euclid’s Fifth Postulate Lobachevski’s GEOMETRY HYPERBOLIC GEOMETRY PHYLLOTAXIS Bodnar’s GEOMETRY Hilbert’s Fourth Problem The “Golden” and “Metallic” Means Binet formukas HYPERBOLIC FIBONACCI and Lucas Functions Gazale Formulas “Golden” FIBONACCI λ-Goniometry
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部