期刊文献+
共找到1,312篇文章
< 1 2 66 >
每页显示 20 50 100
Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells:from Nano to Meter Scale Challenges
1
作者 Yang Li Ming-Shui Yao +1 位作者 Yanping He Shangfeng Du 《Nano-Micro Letters》 2025年第6期482-531,共50页
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport.They have been expected to be a future power source for portable elec... Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport.They have been expected to be a future power source for portable electronic devices.The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application,which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes.Here,we provide a comprehensive review of the progress around this technology,in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale,to catalyst design at the nanoscale,electrode structure at the micro scale and design at the millimeter scale,and finally to device fabrication at the meter scale.The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted.Finally,perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology. 展开更多
关键词 Direct formic acid fuel cell ELECTROCATALYST ELECTRODE formic acid oxidation Mass transfer
在线阅读 下载PDF
Densely populated single-atom catalysts for boosting hydrogen generation from formic acid
2
作者 Xiaogeng Zhao Junmin Wang +6 位作者 Dongnuan Zhang Yunhui Hao Xingmian Zhang Junna Feng Hong Su Cheng Feng Chun Wang 《Carbon Energy》 2025年第1期64-75,共12页
The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coup... The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coupled with hightemperature calcination conditions,limiting the density of M-Nx active sites and thus restricting the catalytic performance of such catalysts.Herein,we describe an effective decoupling strategy to construct high-density M-Nx active sites by generating polyfurfuryl alcohol in the MOF precursor,effectively preventing the formation of metal nanoparticles even with up to 6.377%cobalt loading.This catalyst showed a high H_(2) production rate of 778mLgcat^(−1) h^(−1) when used in the dehydrogenation reaction of formic acid.In addition to the high density of the active site,a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst. 展开更多
关键词 COBALT DEHYDROGENATION formic acid polyfurfuryl alcohol single-atom catalyst
在线阅读 下载PDF
Efficient electrocatalytic oxidation of glycerol toward formic acid over well-defined nickel nanoclusters capped by ligands
3
作者 Dan Yang Xiang Cui +8 位作者 Zhou Xu Qian Yan Yating Wu Chunmei Zhou Yihu Dai Xiaoyue Wan Yuguang Jin Leonid M.Kustov Yanhui Yang 《Chinese Journal of Catalysis》 2025年第9期185-197,共13页
The electrocatalytic oxidation of glycerol toward formic acid is one of the most promising pathways for transformation and utilization of glycerol.Herein,a series of well-defined Ni_(n)(SR)_(2n) nanoclusters(n=4,5,6;d... The electrocatalytic oxidation of glycerol toward formic acid is one of the most promising pathways for transformation and utilization of glycerol.Herein,a series of well-defined Ni_(n)(SR)_(2n) nanoclusters(n=4,5,6;denoted as Ni NCs)were prepared for the electrocatalytic glycerol oxidation toward formic acid,in which Ni_(6)-PET-50CV afforded the most excellent electrocatalytic performance with a high formic acid selectivity of 93% and a high glycerol conversion of 86%.This was attributed to the lowest charge transfer impedance and the most rapid reaction kinetics.Combined electrochemical measurements and X-ray absorption fine structure measurements revealed that the structures of Ni NCs remained intact after CV scanning pretreatment and electrocatalysis via forming the Ni–O bond.Additionally,the kinetic studies and in-situ Fourier transformed infrared suggested a sequential oxidation mechanism,in which the main reaction steps of glycerol→glyceraldehyde→glyceric acid were very rapid to produce a high selectivity of formic acid even though the low glycerol conversion.This work presents an opportunity to study Ni NCs for the efficient electrocatalytic oxidation of biomass-derived polyhydroxyl platform molecules to produce value-added carboxylic acids. 展开更多
关键词 Nickel nanocluster Well-defined structure Electrocatalysis Glycerol oxidation formic acid
在线阅读 下载PDF
Electrocatalytic upcycling of polyethylene terephthalate to formic acid and hydrogen fuels using CoCuO_(x)/MXene catalyst
4
作者 Zhi-Ran Yu Meng-Xin Ji +8 位作者 Zhao-Hui Zhang Yi Zhang Alexandre Barras Ahmed Addad Long-Cheng Tang Yu-Hua Chi Pascal Roussel Sabine Szunerits Rabah Boukherroub 《Journal of Energy Chemistry》 2025年第5期91-100,共10页
A promising way to address environmental problems caused by plastic waste is through its upcycling into renewable energy and resources.With annual production reaching millions of tons,one of the most widely single-use... A promising way to address environmental problems caused by plastic waste is through its upcycling into renewable energy and resources.With annual production reaching millions of tons,one of the most widely single-use daily plastics,polyethylene terephthalate(PET),has recently been investigated in terms of chemical recycling to reduce its environmental impact and generate renewable fuels.This study introduces an innovative electrochemical method for the specific conversion of PET hydrolysate into highvalue compounds utilizing CoCuO_(x)@MXene/NF catalyst.Our findings revealed that the electrocatalyst was capable of facilitating the conversion of water into hydrogen(H_(2)),while simultaneously oxidizing ethylene glycol(EG),obtained from PET plastic waste hydrolysis,into formate with a high selectivity and lower initial potential compared to water oxidation.Notably,the exceptional performance was attributed to the synergistic interfacial electronic coupling effect between CoCuO_(x)and MXene,which results in a low overpotential(1.24 V@10 mA cm^(-2))and a high yield of formate product(87.6%).In addition,the electrolyzer could be operated using solar energy panel for upcycling of PET to formic acid and hydrogen fuels by using CoCuO_(x)@MXene catalyst. 展开更多
关键词 CoCuO_(x)@MXene Water Splitting Plastic electroreforming HYDROGEN formic acid Fuels
在线阅读 下载PDF
PtPdAg nanotrees with low Pt content for high CO tolerance within formic acid and methanol electrooxidation
5
作者 Yu-Fei Wang Shou-Lin Zhang +6 位作者 Yu-Xin Deng Shi-Han Luan Cai-Kang Wang Lin-Fei Ding Xian Jiang Dong-Mei Sun Ya-Wen Tang 《Rare Metals》 2025年第1期300-310,共11页
To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics,a straightforward synthesis for PtPdAg nanotrees(NTs)with exceedingly low Pt content is presented,utilizing the galv... To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics,a straightforward synthesis for PtPdAg nanotrees(NTs)with exceedingly low Pt content is presented,utilizing the galvanic replacement reaction between the initially prepared PdAg NTs and Pt ions.Due to the multilevel porous tree-like structure and the incorporation of low amounts of Pt,the electrocatalytic activity and stability of PtPdAg NTs are markedly enhanced,achieving 1.65 and 1.69 A·mg^(-1)Pt+Pd for the anodic reactions of formic acid oxidation(FAOR)and methanol oxidation(MOR)within DLFCs,surpassing the performance of PdAg NTs,as well as that of commercial Pt and Pd black.Density functional theory(DFT)calculations reveal that the addition of low amounts of Pt leads to an increase in the d-band center of PtPdAg NTs and lower the COads adsorption energy to-1.23 eV,enhancing the anti-CO toxicity properties optimally.This approach offers an effective means for designing low Pt catalysts as exceptional anodic electrocatalysts for direct liquid fuel cells. 展开更多
关键词 PtPdAg nanotrees Low Pt Bifunctional electrocatalysts Methanol oxidation reaction formic acid oxidation
原文传递
Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid
6
作者 Yiyue Ding Qiuxiang Zhang +3 位作者 Lei Zhang Qilu Yao Gang Feng Zhang-Hui Lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期428-432,共5页
Formic acid(FA),which is obtainable through CO_(2)hydrogenation with green hydrogen or biomass conversion,has been used as a prospective liquid organic hydrogen carrier(LOHC)because of the abundant advantages of renew... Formic acid(FA),which is obtainable through CO_(2)hydrogenation with green hydrogen or biomass conversion,has been used as a prospective liquid organic hydrogen carrier(LOHC)because of the abundant advantages of renewability,wide availability,stability,and high volumetric capacity(53 g H_(2)/L).The development of highly efficient catalytic systems to achieve enhanced catalytic activity is attractive but still challenging.Herein,ultrafine and highly dispersed PdAu nanoclusters(NCs)anchored on amino-modified reduced graphene oxide(ArGO)were successfully synthesized via a facile impregnation-reduction method and applied as a catalyst toward formic acid dehydrogenation(FAD).Benefiting from the promoting effect of amino groups,the strain and ligand effect in the alloy,and the Mott–Schottky effect between PdAu NCs and ArGO,the resultant PdAu/ArGO affords an ultrahigh activity under visible light irradiation with an exceptional turnover frequency value of 10,699.5 h^(-1)at 298 K without any additives,more than 2.6times improvement than that under dark,which is the highest among all reported catalysts under the same conditions.This study provides a green and convenient strategy for developing more efficient and sustainable FAD catalysts and promotes the effective utilization of FA as a prospective renewable LOHC. 展开更多
关键词 Visible-light-enhanced Hydrogen production formic acid Pd-Au Heterogeneous catalyst
原文传递
Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
7
作者 Xi Liu Yifan Wang +2 位作者 Zhiwei Dai Daihong Gao Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期705-729,共25页
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(... Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products. 展开更多
关键词 Electrochemical reduction of CO_(2) formic acid Oxidative conversion of biomass LIGNOCELLULOSE Coupled system
在线阅读 下载PDF
Designing catalysts to formic acid oxidation reaction:From nanoscale to single atoms
8
作者 GONG Jia-xin HU Shou-yao XIONG Yu 《Journal of Central South University》 CSCD 2024年第12期4586-4600,共15页
Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the... Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future. 展开更多
关键词 formic acid oxidation reaction nanosized catalysts single atom catalysts synthetic strategy
在线阅读 下载PDF
Photoelectrocatalytic reduction of CO_2 into formic acid using WO_(3-x)/TiO_2 film as novel photoanode 被引量:2
9
作者 杨亚辉 解人瑞 +3 位作者 黎航 刘灿军 刘文华 占发琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2390-2396,共7页
A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer... A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid. 展开更多
关键词 photoelectrocatalytic reduction CO2 formic acid WO3-x TiO2 film photoanode
在线阅读 下载PDF
A Revisit to the Role of Bridge-adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid at Pt Electrodes 被引量:1
10
作者 徐杰 梅东 +3 位作者 袁道福 张尊彪 刘少雄 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第3期321-328,I0004,共9页
The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. In... The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out. 展开更多
关键词 formic acid oxidation Mechanism ELECTROCATALYSIS Formate pathway Directpathway
在线阅读 下载PDF
Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation 被引量:5
11
作者 Qing-Wei Ding Qing Luo +6 位作者 Liang Lin Xing-Ping Fu Lai-Sen Wang Guang-Hui Yue Jie Lin Qing-Shui Xie Dong-Liang Peng 《Rare Metals》 SCIE EI CAS CSCD 2022年第8期2595-2605,共11页
Developing efficient and stable bimetallic Pdbased anode electrocatalysts toward formic acid oxidation(FAO)is of great significance for commercial applications of direct formic acid fuel cells(DFAFCs).Herein,we report... Developing efficient and stable bimetallic Pdbased anode electrocatalysts toward formic acid oxidation(FAO)is of great significance for commercial applications of direct formic acid fuel cells(DFAFCs).Herein,we report a facile synthesis approach to fabricate PdCu nanoclusters(NCs)catalysts with granular-film structure.The introduction of Cu can adjust the electronic structure and d-band center of Pd,which can improve the catalytic performance of the catalysts.Compared with Pd NCs catalyst,the catalytic durability and activity of PdCu NCs catalysts for FAO are greatly improved.The order for catalytic activity of NC metals is Pd_(85)Cu_(15)NCs>Pd_(70)Cu_(30)NCs>Pd NCs.The maximum mass activity can be acquired with the Pd_(85)Cu_(15)NCs catalyst,which is about1.7 times that of the Pd NCs catalyst.And Pd_(85)Cu_(15)NCs catalyst still maintains the highest catalytic current density after 50 cycles,indicating that Pd_(85)Cu_(15)NCs catalyst has the best durability and electrocatalytic activity for FAO.Our work provides a new prospect for the design of highly efficient anode catalysts materials for DFAFCs. 展开更多
关键词 Plasma gas-condensation method formic acid electrooxidation Direct formic acid fuel cells(DFAFCs) PdCu nanoclusters catalyst
原文传递
Pt-Containing Ag_2S-Noble Metal Nanocomposites as Highly Active Electrocatalysts for the Oxidation of Formic Acid 被引量:1
12
作者 Hui Liu Yan Feng +1 位作者 Hongbin Cao Jun Yang 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期252-257,共6页
Nanocomposites with synergistic effect are of great interest for their enhanced properties in a given application. Herein, we reported the high catalytic activity of Pt-containing Ag2S-noble metal nanocomposites in fo... Nanocomposites with synergistic effect are of great interest for their enhanced properties in a given application. Herein, we reported the high catalytic activity of Pt-containing Ag2S-noble metal nanocomposites in formic acid oxidation, which is a key reaction in direct formic acid fuel cell. The electrochemical measurements including voltammograms and chronoamperograms are used to characterize the catalytic property of Pt-containing nanocomposites for the oxidation of formic acid. In view of the limited literatures on using nanocomposites consisting of semiconductor and noble metals for catalyzing the reactions of polymer electrolyte membrane-based fuel cells, this study provides a helpful exploration for expanding the application of semiconductor-noble metal nanocomposites. 展开更多
关键词 NANOCOMPOSITES Synergistic effect formic acid oxidation Direct formic acid fuel cell
在线阅读 下载PDF
Unveiling the decomposition mechanism of formic acid on Pd/WC(0001) surface by using density function theory 被引量:1
13
作者 Jinhua Zhang Yuanbin She 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期415-425,共11页
In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent per... In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization. 展开更多
关键词 Density functional theory formic acid Direct formic acid fuel cells WC(0001)-supported Pd monolayer Decomposition mechanism
在线阅读 下载PDF
Hydrothermal synthesis of titanium-supported nanoporous palladium-copper electrocatalysts for formic acid oxidation and oxygen reduction reaction
14
作者 易清风 肖兴中 刘云清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1184-1190,共7页
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ... Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti. 展开更多
关键词 Pd electrode Pd-Cu electrode formic acid oxidation oxygen reduction reaction NANOPARTICLE ELECTROCATALYSIS
在线阅读 下载PDF
Pd micro-nanoparticles electrodeposited on graphene/polyimide membrane for electrocatalytic oxidation of formic acid 被引量:3
15
作者 张焱 王琴 +2 位作者 叶为春 李佳佳 王春明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2986-2993,共8页
A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microsc... A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD).The Pd micro-nanoparticles were prepared on a COOH-CNTs/PI membrane as a comparative sample.The XRD and SEM investigations for Pd electrodeposition demonstrate that the particle size of Gr/PI composite membrane is smaller than that of COOH-CNTs/PI membrane,while the uniform and dense distribution of Pd micro-nanoparticles on the Gr/PI composite membrane is greater than that on the COOH-CNTs/PI membrane.The electrocatalytic properties of Pd/Gr/PI and Pd/COOH-CNTs/PI catalysts for the oxidation of formic acid were investigated by cyclic voltammetry(CV) and chronoamperometry(CA).It is found that the electrocatalytic activity and stability of Pd/Gr/PI are superior to those of Pd/COOH-CNTs/PI catalyst.This is because smaller metal particles and higher dense distribution desirably provide abundant catalytic sites and mean higher catalytic activity.Therefore,the Pd/Gr/PI catalyst has better catalytic performance for formic acid oxidation than the Pd/COOH-CNTs/PI catalyst. 展开更多
关键词 Pd micro-nanoparticles graphene/polyimide membrane carboxyl carbon nanotubes/polyimide membrane electro catalytic oxidation formic acid electrochemical deposition
在线阅读 下载PDF
Role of Bridge-bonded Formate in Formic Acid Dehydration to CO at Pt Electrode: Electrochemial in-situ Infrared Spectroscopic Study 被引量:1
16
作者 张尊彪 徐杰 +1 位作者 康婧 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期471-476,J0002,共7页
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded forma... Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO. 展开更多
关键词 Mechanism for formic acid dehydration Formate intermediate CO pathway Pt electrode Infrared spectroscopic studies under attenuated total reflection configuration
在线阅读 下载PDF
Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction 被引量:6
17
作者 Dong Chen Linlin Xu +1 位作者 Hui Liu Jun Yang 《Green Energy & Environment》 SCIE CSCD 2019年第3期254-263,共10页
Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors ... Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors with a digestive ripening process in oleylamine, we report the synthesis of copper-palladium(Cu-Pd) alloy multicubes with rough surfaces. Benefiting from their alloy and unique rough-surfaced structure,which provides ample edge/corner and step atoms as well as the electronic coupling between Cu and Pd leading to the lower of d-band center, the rough-surfaced Cu-Pd alloy multicubes show much better electrocatalytic performance not only for formic acid oxidation but also for oxygen reduction in comparison with those of spherical Cu-Pd alloy nanoparticles and commercial Pd/C catalyst. In contrast, we confirm that the rough-surfaced Cu-Pd alloy multicubes only exhibit very low Faradaic efficiency(34.3%) for electrocatalytic conversion of carbon dioxide(CO2) to carbon monoxide(CO) due to the presence of strong competing hydrogen evolution reaction, which results in their very poor selectivity for the reduction of CO2 to CO. The findings in this study not only offer a promising strategy to produce highly effective electrocatalysts for direct formic acid fuel cells, but also enlighten the ideas to design efficient electrocatalysts for CO2 reduction. 展开更多
关键词 Copper–palladium Multicube formic acid oxidation Oxygen REDUCTION CO2 REDUCTION
在线阅读 下载PDF
Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles 被引量:4
18
作者 Hui-Hui Wang Jin-Feng Zhang +5 位作者 Ze-Lin Chen Meng-Meng Zhang Xiao-Peng Han Cheng Zhong Yi-Da Deng Wen-Bin Hu 《Rare Metals》 SCIE EI CAS CSCD 2019年第2期115-121,共7页
A facile approach was developed for the synthesis of polycrystalline palladium nanoparticles(Pd NPs)by using tannic acid(TA) as green reagent and stabilizer in a 30 ℃ water bath. The size of Pd NPs can be tuned in a ... A facile approach was developed for the synthesis of polycrystalline palladium nanoparticles(Pd NPs)by using tannic acid(TA) as green reagent and stabilizer in a 30 ℃ water bath. The size of Pd NPs can be tuned in a range of 10–60 nm simply by adjusting the concentration of Pd precursor. The catalytic activity and stability of the as-obtained Pd NPs toward formic acid oxidation were analyzed. It is found that these Pd NPs with different sizes exhibit size-dependent and enhanced formic acid oxidation performance compared to the commercial Pd black catalyst. It should be noted that the Pd catalysts with an average size of 24 nm demonstrate the best catalytic activity and stability among the other prepared Pd NPs, which can be ascribed to its larger electrochemical surface area(ECSA)and polycrystalline structure with defects. 展开更多
关键词 POLYCRYSTALLINE PALLADIUM NANOPARTICLE Size CONTROLLABLE Tannic acid: ROOM temperature formic ACID oxidation
原文传递
Preparation of Ultrafine and High Dispersion Pd/C Catalyst and Its Electrocatalytic Performance for Formic Acid Oxidation 被引量:8
19
作者 TANG Ya-wen ZHANG Lin-lin +4 位作者 WANG Xin BAO Jian-chun ZHOU Yi-ming LU Lu-de LU Tian-hong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第2期239-242,共4页
A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) a... A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation. 展开更多
关键词 Pd/C catalyst Complex reduction method formic acid oxidation
在线阅读 下载PDF
MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid 被引量:11
20
作者 Sujuan Zhang Shixiang Duan +5 位作者 Gaoli Chen Sugang Meng Xiuzhen Zheng You Fan Xianliang Fu Shifu Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期193-204,共12页
Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalys... Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results. 展开更多
关键词 Hydrogen production Zn3In2S6 formic acid MOS2 PHOTOCATALYSIS
在线阅读 下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部