Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise.Here,we diagnose the impact of the decline in global human production activities level caused by the COVID-19 ...Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise.Here,we diagnose the impact of the decline in global human production activities level caused by the COVID-19 on ozone sensitivity through the ratio of formaldehyde(HCHO)and NO_(2)(FNR=HCHO/NO_(2))observations from the TROPOspheric Monitoring Instrument.We use a relative uncertainty threshold to clean the satellite FNR,and our satellite FNR present a good correlation(R=0.6248)with U.S.Environmental Protection Agency observations.We found that the outbreak of the COVID-19 did not change the pattern of global ozone sensitivity,while the global regimes was transforming or strengthening to VOC-limited regimes due to the significant decline of human production activities levels.During the COVID-19,ozone sensitivity in Eastern China and East Africa continued to shift to VOC-limited regimes,while India,Western Europe and North America first moved to NOx-limited regimes,and then changed to VOC-limited regimes with the resumption of production and the increase in travel.The clustering results tell that urban ozone sensitivity tends to shift towards NOx-limited regimes as economic growing.The ozone formation in cities with lower FNR and per capita gross domestic product(GDP)are more sensitive to changes in VOCs,while cities with higher FNR and per capita GDP are more sensitive to variations in NOx.Cities with intermediate FNR and GDP are good evidence of the existence of transitional regimes.Our study identifies the driving role of urban economics in orienting the evolution of ozone sensitivity regimes.展开更多
Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains ...Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde.展开更多
Herein we report the facial detection of formaldehyde(FA)by using an interesting red acidichromic carbon dots(ACDs)which turns blue when pH gradually decreases.The color change was attributed to the conversion between...Herein we report the facial detection of formaldehyde(FA)by using an interesting red acidichromic carbon dots(ACDs)which turns blue when pH gradually decreases.The color change was attributed to the conversion between the double bonds(C=N)and single bonds(C-N)on the surface of the ACDs.Inspired by the reaction between FA and ammonium chloride that produces H^(+)and methenamine and decrease the pH value of the solution,a fast and simple visual detection method for FA was found with a minimum discriminated concentration of 0.04 mol/L.A fluorescence detection method for FA was also found with LOD of 0.029 mol/L and FA in real sample,e.g.,shredded squid was successfully analyzed.This work provides a new idea of developing fast visual detection method for daily monitor or in-site semiquantitative assessment on FA.展开更多
This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using pro...This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using prohibited materials in the manufacture of these fabrics, and the use of unknown dyes has proven that some of them cause diseases to humans, especially children, that cause cancerous diseases. With the study sample consisting of (7), the study results indicate the presence of toxic formaldehyde in all sample dyes obtained from discount markets and online shopping.展开更多
The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of ...The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources.展开更多
The unique properties of TiO_(2)-sulfur(TiO_(2)-S)modified graphene nanocomposite electrode(GPE/TiO_(2)-S)in the electrochemical sensing of formaldehyde compound has been evaluated.We prepared TiO_(2)-S by hydrotherma...The unique properties of TiO_(2)-sulfur(TiO_(2)-S)modified graphene nanocomposite electrode(GPE/TiO_(2)-S)in the electrochemical sensing of formaldehyde compound has been evaluated.We prepared TiO_(2)-S by hydrothermal method and modified the graphene nanocomposite electrode by applying electrochemical cyclic voltammetry(CV)approach.The TiO_(2)-S nanocomposite was characterized by X-ray diffraction(XRD),while the GPE/TiO_(2)-S was examined by scanning electron microscopy(FESEM)and X-Ray fluorosense(XRF)techniques.TiO_(2)-S has a grain size of 19.32 nm.The surface morphology of the GPE/TiO_(2)-S nanocomposite shows a good,intact,and tightly porous structure with TiO_(2)-S covers the graphene surface.The content of optimized GPE/TiO_(2)-S electrodes is 41.5%of graphene,37.8%of TiO_(2),and 12.4%of sulfur that was prepared by mixing 1 g of TiO_(2)-S with 0.5 g of graphene and 0.3 mL paraffin.The GPE/TiO_(2)-S electrode produces a high anodic current(I_(pa))of 800μA and a high cathodic current(I_(pc))of-600μA at a scan rate of 0.1 V·s^(-1)using an electrolyte0.01 mol·L^(-1)K_3[Fe(CN)_6]solution containing 150 mg·L^(-1)formaldehyde.The limit of detection can reach as low as 9.7 mg·L^(-1)with stability with Horwitz ratio value as low as 0.397.The composite electrode also exhibits excellent slectivity properties by showing clear formaldehyde sugnal in the presence of high concentration of interfering agent.GPE/TiO_(2)-S electrode should find potential application of formaldehyde detection in food industries.展开更多
Multi-axial differential optical absorption spectroscopy(MAX-DOAS)measurements were conducted in Xishuangbanna,Yunnan,China,between November 1,2021 and June 30,2022 to obtain vertical distributions of formaldehyde(HCH...Multi-axial differential optical absorption spectroscopy(MAX-DOAS)measurements were conducted in Xishuangbanna,Yunnan,China,between November 1,2021 and June 30,2022 to obtain vertical distributions of formaldehyde(HCHO)and glyoxal(CHOCHO).The observations show an increase in vertical column densities(VCDs)and volume mixing ratios(VMRs)for both HCHO and CHOCHO concentrations during periods of biomass combustion.The VCDs of HCHO and CHOCHO from TROPOMI are in good agreementwith the MAX-DOAS observations.(R^(2) HCHO=0.71;R^(2) CHOCHO=0.70).Regarding seasonal variations,HCHO predominantly occupies the upper layer(400-800 m)during the biomass burning,possibly attributed to the formation of secondary HCHO as the plume ascends during combustion.CHOCHO is primarily found in the lower layer(0-200 m),suggesting a longer lifespan for HCHO compared to CHOCHO,preventing the latter from diffusing to higher altitudes.Concerning the daily variation patterns,both HCHO and CHOCHO VMRs exhibited peaks at 9:00 and 13:00,which were attributed to the nighttime accumulation and midday oxidation.Furthermore,we also investigated the sources of volatile organic compounds(VOCs)using the CHOCHO to HCHO ratio(RGF).During the period of biomass burning,there are minimal differences in the daily RGF across layers,indicating that biomass burning is the predominant source.During the non-biomass burning period,the daily RGF shows significant differences among layers,indicating that emissions from biological and anthropogenic sources primarily contribute during the period.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
During high-temperature periods in summer,formaldehyde(HCHO)levels increase due to secondary production.However,recent studies have also shown a rise in the HCHO concentration in winter,but the underlying cause remain...During high-temperature periods in summer,formaldehyde(HCHO)levels increase due to secondary production.However,recent studies have also shown a rise in the HCHO concentration in winter,but the underlying cause remains unclear.Here,HCHO observations in urban Beijing were conducted,the impact of meteorological differences between warm and cold seasons to HCHO concentrations was investigated.Additionally,the positive matrix factorization model was applied to the source apportionment of HCHO,with a focus on changes during pollution events.The results indicated that,during warm seasons,the secondary production of HCHO was driven by high temperature influenced by the low-pressure front,with the contribution of secondary production+background peaking at 85.9% in the afternoon,exhibiting a unimodal diurnal variation.Conversely,during cold seasons,the influence of a uniform pressure field,coupled with weak winds,low boundary layers and high humidity,led to HCHO accumulation from primary emissions,resulting in multiday highconcentration pollution.During the most severe pollution periods,anthropogenic primary emissions contributed up to 91.7%.Therefore,while the contribution of volatile organic compounds to HCHO levels through secondary production has been recognized,the significant impact of primary emissions during cold seasons cannot be overlooked.展开更多
A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performa...A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS,in situ DRIFTS,BET,XRD,SEM and H_(2)-TPR.Meanwhile,10%Gd0.25Ce0.75/MPB exhibited excellent performance,favorable SO_(2) and moisture toleration over a broad temperature range from 160 to 320℃,where it achieved 96.8%removal efficiency with 90.5%selectivity at 200℃.The single or united effects of O_(2),SO_(2),H_(2)O on HCHO abatement over 10%Gd_(0.25)Ce_(0.75)/MPB were tested,and the findings demonstrated that the suppressive effects of SO_(2) and H_(2)O outweighed the promoting influence of O_(2) within a specific range.Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB,ascribing to the synergistic effect of GdO_(x) and CeO_(x) and benefitting from the augmentation of surface area and total pore volume,the aggrandizement of surface active oxygen species,the promotion of redox ability and the inhibition crystallization of CeO_(x).According to in situ DRIFTS,a series of intermediates including formate species and dioxymethylene(DOM)were produced,which would eventually decompose into H_(2)O and CO_(2).In addition,the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support,which were also answerable for its distinguished catalytic performance.Furthermore,10%Gd0.25Ce0.75/MPB possessed remarkable potential for industrial applications.展开更多
Formaldehyde(HCHO)is a significant indoor pollutant found in various sources and poses potential health risks to humans.Noble metal catalysts show efficient and stable catalytic activity for ambient-temperature HCHO o...Formaldehyde(HCHO)is a significant indoor pollutant found in various sources and poses potential health risks to humans.Noble metal catalysts show efficient and stable catalytic activity for ambient-temperature HCHO oxidation,yet suffer from low metal utilization.Efforts focus on designing catalysts with enhanced intrinsic activity and reduced noble metal loading.In this study,we developed a simple pretreatment method using ammonia solution on SiO_(2)carrier to enhance the activity of the Pd/SiO_(2)catalyst for HCHO oxidation.After the carrier was pretreated with an ammonia solution,a significant promoting effect was observed on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst.It achieved almost complete oxidation of 150 ppmV of HCHO at 25℃,much better than the Pd/SiO_(2)-R(5%HCHO conversion rate).Multiple characterization results indicated that the ammonia solution pretreatment of the SiO_(2)carrier increased the surface defects,facilitating the anchoring of Pd nanoparticles and increasing their dispersion.The increase dispersion of Pd resulted in the generation of additional oxygen vacancies on the catalyst surfaces.The increased in oxygen vacancies on the catalyst was beneficial for enhancing the catalyst's ability to activate H_(2)O to form surface hydroxyl groups,thereby accelerating the catalytic oxidation process of HCHO.The reaction mechanism of HCHO on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst mainly follows an efficient pathway:firstly,the HCHO being oxidized by surface active hydroxyl groups to formate;subsequently,the formate being oxidized by hydroxyl groups to H_(2)O and CO_(2).This study provides a promising strategy for designing high-performance noble metal catalysts for HCHO catalytic oxidation.展开更多
Volatile Organic Compounds(VOCs)are highly harmful to human beings and other organisms,and thus the elimination of VOCs is extremely urgent.Here,La-Si co-doped TiO_(2)microsphere photocatalysts,which were prepared by ...Volatile Organic Compounds(VOCs)are highly harmful to human beings and other organisms,and thus the elimination of VOCs is extremely urgent.Here,La-Si co-doped TiO_(2)microsphere photocatalysts,which were prepared by a hydrothermal method,exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO_(2).The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers,as verified by the electrochemical results in combination with density functional theory calculations.In addition,the Si dopant changed the microstructure and surface acidity,while the addition of La promoted the separation efficiency of charge carriers.More interestingly,it was found that singlet oxygen was the key species in the activation of molecular dioxygen,and it played a pivotal role in the photocatalytic decomposition of formaldehyde.This work provides a novel strategy for the selective activation of dioxygen for use in the decomposition of formaldehyde.展开更多
Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmen...Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst(Pd/SiO_(2))by adding alkali metal potassium(K).A formidable promotion effect was observed when the K doping to Pd/SiO_(2) catalysts.It achieves a conversion rate of 93%for 270 ppmV of HCHO to harmless CO_(2) and H_(2)O at a weight hourly space velocity(WHSV)of 300,000 mL/(g·hr)at 25℃.Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition,which not only stabilized Pd species on the carrier surface but alsomarkedly enhanced its dispersal on the SiO_(2) carrier.The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO_(2) catalysts.The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover,which also contributed to elevating the electron density on the Pd sites.Meanwhile,the oxygen vacancies favored the O_(2) activation to formmore reactive oxygen species participating in the HCHO oxidation reaction,thus improving the performance of Pd/SiO_(2) catalysts displayed for HCHO oxidation.This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.展开更多
Formaldehyde is a pollutant that significantly affects the indoor air quality.However,conventional remediation approaches can be challenging to deal with low-concentration formaldehyde in an indoor environment.In this...Formaldehyde is a pollutant that significantly affects the indoor air quality.However,conventional remediation approaches can be challenging to deal with low-concentration formaldehyde in an indoor environment.In this study,Photocatalysts of Ag/graphitic carbon nitride(g-C_(3)N_(4))/Ni with 3D reticulated coral structure were prepared by thermal polymerization and liquid phase photo-deposition,using nickel foam(NF)as the carrier.Experiments demonstrated that when the Ag concentration was 3%,and the relative humidity was 60%,the Ni/Ag/g-C_(3)N_(4)showed the maximum degradation rate of formaldehyde at 90.19%under visible light irradiation,and the formaldehyde concentration after degradation was lower than the Hygienic standard stated by the Chinese Government.The porous structure of Ni/Ag/g-C_(3)N_(4)and the formation of Schottky junctions promoted the Adsorption efficiency and degradation of formaldehyde,while the nickel foam carrier effectively promoted the desorption of degradation products.Meanwhile,the degradation rate was only reduced by3.4%after 16 recycles,the three-dimensional porous structure extended the lifetime of the photocatalyst.This study provides a new strategy for the degradation of indoor formaldehyde at low concentrations.展开更多
In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalys...In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification.展开更多
Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical ...Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical application.Therefore,developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic.In this study,Ti_(3)C_(2)Tx/SnO_(2)heterostructures were constructed,which could selectively detect formaldehyde at room temperature with a response value of 29.16%(10×10^(-6)).In addition,the sensor shows a remarkable theoretical detection limit of 5.09×10^(-9)and good longterm stability.Density functional theory(DFT)simulations reveal that SnO_(2)nano spheres provide the majority of adsorption sites that strongly interact with formaldehyde.Meanwhile,Ti_(3)C_(2)T_(x)acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature.Moreover,the formation of p-n heterostructures between SnO_(2)and Ti_(3)C_(2)T_(x)boosts the Schottky barrier at the interface,which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas.This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.展开更多
Developing low-loading single-atom catalysts with superior catalytic activity and selectivity in formaldehyde(HCHO)oxidation at room temperature remains challenging.Herein,ZrO_(2)nanoparticles coupled low-loading Ir s...Developing low-loading single-atom catalysts with superior catalytic activity and selectivity in formaldehyde(HCHO)oxidation at room temperature remains challenging.Herein,ZrO_(2)nanoparticles coupled low-loading Ir single atoms in N-doped carbon(Ir_(1)-N-C/ZrO_(2))was prepared.The optimal Ir_(1)-N-C/ZrO_(2)with 0.25 wt%Ir loading delivers the high HCHO removal and conversion efficiency(>95%)at 20℃,which is higher than that over Ir_(1)-N-C with the same Ir loading.The specific rate can reach 1285.6 mmol gIr^(-1)h^(-1),surpassing the Ir based catalysts reported to date.Density functional theory calculation results and electron spin resonance spectra indicate that the introduction of Zr O_(2)nanoparticles modulate the electronic structure of the Ir single atoms,promoting O_(2)activation to·O_(2)^(–).Moreover,the Ir-C-Zr channel is favorable for the dissociation of·O_(2)^(–)to active oxygen atom(*O),and further accelerates the transformation of HCHO and intermediates(dioxymethylene and formates)to CO_(2)and H_(2)O.This work provides a facile strategy to design low-loading single-atom catalysts with high catalytic activity toward HCHO oxidation.展开更多
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi...Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.展开更多
The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for ...The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for the photocatalytic removal of gaseous formaldehyde(a volatile organic compound).Among the obtained catalysts,the presence of oxygen vacancies restricted photogenerated electron and holes recombination.98.00%removal of gaseous formaldehyde in 150 min could be achieved over TNS600 by xenon lamp.The removal efficiency for formaldehyde was well retained for five cycle experiment.The results from PL,TRPL and EIS revealed that TNS600 had the best separation efficiency of photogenerated electrons and holes,and the enhanced charge separation led to a significant increase in photocatalytic activity.The photocatalytic oxidation mechanism indicated that the ^(•)OH and ^(•)O_(2)−radicals were mainly involved in the efficient elimination of gaseous formaldehyde and were able to mineralize formaldehyde to H_(2)O and CO_(2).展开更多
Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include te...Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality.展开更多
基金supported by the National Key R&D Program(No.2021YFE0117300)the National Natural Science Foundation of China(No.42375090)+6 种基金Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks(No.ZDSYS20220606100604008)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110713)Guangdong University Research Project Science Team(No.2021KCXTD004)the Major Talent Project of Guangdong Province(No.2021QN020924)Shandong Provincial Natural Science Foundation,China(No.ZR2020QD012)Shenzhen Science and Technology Program(Nos.KQTD20210811090048025,JCYJ20210324104604012 and JCYJ20220530115404009)supported by the Center for Computational Science and Engineering at Southern University of Science and Technology.
文摘Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise.Here,we diagnose the impact of the decline in global human production activities level caused by the COVID-19 on ozone sensitivity through the ratio of formaldehyde(HCHO)and NO_(2)(FNR=HCHO/NO_(2))observations from the TROPOspheric Monitoring Instrument.We use a relative uncertainty threshold to clean the satellite FNR,and our satellite FNR present a good correlation(R=0.6248)with U.S.Environmental Protection Agency observations.We found that the outbreak of the COVID-19 did not change the pattern of global ozone sensitivity,while the global regimes was transforming or strengthening to VOC-limited regimes due to the significant decline of human production activities levels.During the COVID-19,ozone sensitivity in Eastern China and East Africa continued to shift to VOC-limited regimes,while India,Western Europe and North America first moved to NOx-limited regimes,and then changed to VOC-limited regimes with the resumption of production and the increase in travel.The clustering results tell that urban ozone sensitivity tends to shift towards NOx-limited regimes as economic growing.The ozone formation in cities with lower FNR and per capita gross domestic product(GDP)are more sensitive to changes in VOCs,while cities with higher FNR and per capita GDP are more sensitive to variations in NOx.Cities with intermediate FNR and GDP are good evidence of the existence of transitional regimes.Our study identifies the driving role of urban economics in orienting the evolution of ozone sensitivity regimes.
文摘Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde.
基金support from the National Natural Science Foundation of China(Nos.21804062,52071171,and 52202248)Liaoning BaiQianWan Talents Program(No.LNBQW2018B0048)+8 种基金Shenyang Science and Technology Project(No.21-108-9-04)Key Research Project of Department of Education of Liaoning Province(No.LJKZZ20220015)Australian Research Council(ARC)through Future Fellowship(No.FT210100298)Discovery Project(No.DP220100603)Linkage Project(Nos.LP210200504,LP220100088,and LP230200897)Industrial Transformation Research Hub(No.IH240100009)schemesthe Australian Government through the Cooperative Research Centres Projects(No.CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(No.TM021)European Commission’s Australia-Spain Network for Innovation and Research Excellence(AuSpire).
文摘Herein we report the facial detection of formaldehyde(FA)by using an interesting red acidichromic carbon dots(ACDs)which turns blue when pH gradually decreases.The color change was attributed to the conversion between the double bonds(C=N)and single bonds(C-N)on the surface of the ACDs.Inspired by the reaction between FA and ammonium chloride that produces H^(+)and methenamine and decrease the pH value of the solution,a fast and simple visual detection method for FA was found with a minimum discriminated concentration of 0.04 mol/L.A fluorescence detection method for FA was also found with LOD of 0.029 mol/L and FA in real sample,e.g.,shredded squid was successfully analyzed.This work provides a new idea of developing fast visual detection method for daily monitor or in-site semiquantitative assessment on FA.
文摘This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using prohibited materials in the manufacture of these fabrics, and the use of unknown dyes has proven that some of them cause diseases to humans, especially children, that cause cancerous diseases. With the study sample consisting of (7), the study results indicate the presence of toxic formaldehyde in all sample dyes obtained from discount markets and online shopping.
基金supported by the National Natural Science Foundation of China(U23A2088,22025206)the Dalian Innovation Support Plan for High Level Talents(2022RG13)+2 种基金DICP(Grant:DICP I202453,DICP I202234)the Fundamental Research Funds for the Central Universities(20720220008)support of the Liaoning Key Laboratory of Biomass Conversion for Energy and Material。
文摘The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources.
基金the financial support from the Ministry of Education,Culture,Research and Technology of the Republic of Indonesia under the Applied Research award(DIPA023.17.1.690523/2023)the World Class Professor award grant 2023。
文摘The unique properties of TiO_(2)-sulfur(TiO_(2)-S)modified graphene nanocomposite electrode(GPE/TiO_(2)-S)in the electrochemical sensing of formaldehyde compound has been evaluated.We prepared TiO_(2)-S by hydrothermal method and modified the graphene nanocomposite electrode by applying electrochemical cyclic voltammetry(CV)approach.The TiO_(2)-S nanocomposite was characterized by X-ray diffraction(XRD),while the GPE/TiO_(2)-S was examined by scanning electron microscopy(FESEM)and X-Ray fluorosense(XRF)techniques.TiO_(2)-S has a grain size of 19.32 nm.The surface morphology of the GPE/TiO_(2)-S nanocomposite shows a good,intact,and tightly porous structure with TiO_(2)-S covers the graphene surface.The content of optimized GPE/TiO_(2)-S electrodes is 41.5%of graphene,37.8%of TiO_(2),and 12.4%of sulfur that was prepared by mixing 1 g of TiO_(2)-S with 0.5 g of graphene and 0.3 mL paraffin.The GPE/TiO_(2)-S electrode produces a high anodic current(I_(pa))of 800μA and a high cathodic current(I_(pc))of-600μA at a scan rate of 0.1 V·s^(-1)using an electrolyte0.01 mol·L^(-1)K_3[Fe(CN)_6]solution containing 150 mg·L^(-1)formaldehyde.The limit of detection can reach as low as 9.7 mg·L^(-1)with stability with Horwitz ratio value as low as 0.397.The composite electrode also exhibits excellent slectivity properties by showing clear formaldehyde sugnal in the presence of high concentration of interfering agent.GPE/TiO_(2)-S electrode should find potential application of formaldehyde detection in food industries.
基金supported by Yunnan Fundamental Research Projects(No.202101AT070003)the National Natural Science Foundation of China(No.42365007).
文摘Multi-axial differential optical absorption spectroscopy(MAX-DOAS)measurements were conducted in Xishuangbanna,Yunnan,China,between November 1,2021 and June 30,2022 to obtain vertical distributions of formaldehyde(HCHO)and glyoxal(CHOCHO).The observations show an increase in vertical column densities(VCDs)and volume mixing ratios(VMRs)for both HCHO and CHOCHO concentrations during periods of biomass combustion.The VCDs of HCHO and CHOCHO from TROPOMI are in good agreementwith the MAX-DOAS observations.(R^(2) HCHO=0.71;R^(2) CHOCHO=0.70).Regarding seasonal variations,HCHO predominantly occupies the upper layer(400-800 m)during the biomass burning,possibly attributed to the formation of secondary HCHO as the plume ascends during combustion.CHOCHO is primarily found in the lower layer(0-200 m),suggesting a longer lifespan for HCHO compared to CHOCHO,preventing the latter from diffusing to higher altitudes.Concerning the daily variation patterns,both HCHO and CHOCHO VMRs exhibited peaks at 9:00 and 13:00,which were attributed to the nighttime accumulation and midday oxidation.Furthermore,we also investigated the sources of volatile organic compounds(VOCs)using the CHOCHO to HCHO ratio(RGF).During the period of biomass burning,there are minimal differences in the daily RGF across layers,indicating that biomass burning is the predominant source.During the non-biomass burning period,the daily RGF shows significant differences among layers,indicating that emissions from biological and anthropogenic sources primarily contribute during the period.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.42075097 and 42177081)the National Key R&D Program of China(No.2023YFC3706103)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0760200)Beijing Municipal Natural Science Foundation(No.8222075)the Youth Cross Team Scientific Research Project of the Chinese Academy of Sciences(No.JCTD-2021-10)。
文摘During high-temperature periods in summer,formaldehyde(HCHO)levels increase due to secondary production.However,recent studies have also shown a rise in the HCHO concentration in winter,but the underlying cause remains unclear.Here,HCHO observations in urban Beijing were conducted,the impact of meteorological differences between warm and cold seasons to HCHO concentrations was investigated.Additionally,the positive matrix factorization model was applied to the source apportionment of HCHO,with a focus on changes during pollution events.The results indicated that,during warm seasons,the secondary production of HCHO was driven by high temperature influenced by the low-pressure front,with the contribution of secondary production+background peaking at 85.9% in the afternoon,exhibiting a unimodal diurnal variation.Conversely,during cold seasons,the influence of a uniform pressure field,coupled with weak winds,low boundary layers and high humidity,led to HCHO accumulation from primary emissions,resulting in multiday highconcentration pollution.During the most severe pollution periods,anthropogenic primary emissions contributed up to 91.7%.Therefore,while the contribution of volatile organic compounds to HCHO levels through secondary production has been recognized,the significant impact of primary emissions during cold seasons cannot be overlooked.
基金supported by the Scientific Research Project of Hunan Provincial EducationDepartment(No.22B0458)the National Natural Science Foundation of China(No.52270102).
文摘A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS,in situ DRIFTS,BET,XRD,SEM and H_(2)-TPR.Meanwhile,10%Gd0.25Ce0.75/MPB exhibited excellent performance,favorable SO_(2) and moisture toleration over a broad temperature range from 160 to 320℃,where it achieved 96.8%removal efficiency with 90.5%selectivity at 200℃.The single or united effects of O_(2),SO_(2),H_(2)O on HCHO abatement over 10%Gd_(0.25)Ce_(0.75)/MPB were tested,and the findings demonstrated that the suppressive effects of SO_(2) and H_(2)O outweighed the promoting influence of O_(2) within a specific range.Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB,ascribing to the synergistic effect of GdO_(x) and CeO_(x) and benefitting from the augmentation of surface area and total pore volume,the aggrandizement of surface active oxygen species,the promotion of redox ability and the inhibition crystallization of CeO_(x).According to in situ DRIFTS,a series of intermediates including formate species and dioxymethylene(DOM)were produced,which would eventually decompose into H_(2)O and CO_(2).In addition,the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support,which were also answerable for its distinguished catalytic performance.Furthermore,10%Gd0.25Ce0.75/MPB possessed remarkable potential for industrial applications.
基金supported by the Sanming University(No.23YG05)the Science Foundation of Fujian Province(No.2023J011027).
文摘Formaldehyde(HCHO)is a significant indoor pollutant found in various sources and poses potential health risks to humans.Noble metal catalysts show efficient and stable catalytic activity for ambient-temperature HCHO oxidation,yet suffer from low metal utilization.Efforts focus on designing catalysts with enhanced intrinsic activity and reduced noble metal loading.In this study,we developed a simple pretreatment method using ammonia solution on SiO_(2)carrier to enhance the activity of the Pd/SiO_(2)catalyst for HCHO oxidation.After the carrier was pretreated with an ammonia solution,a significant promoting effect was observed on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst.It achieved almost complete oxidation of 150 ppmV of HCHO at 25℃,much better than the Pd/SiO_(2)-R(5%HCHO conversion rate).Multiple characterization results indicated that the ammonia solution pretreatment of the SiO_(2)carrier increased the surface defects,facilitating the anchoring of Pd nanoparticles and increasing their dispersion.The increase dispersion of Pd resulted in the generation of additional oxygen vacancies on the catalyst surfaces.The increased in oxygen vacancies on the catalyst was beneficial for enhancing the catalyst's ability to activate H_(2)O to form surface hydroxyl groups,thereby accelerating the catalytic oxidation process of HCHO.The reaction mechanism of HCHO on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst mainly follows an efficient pathway:firstly,the HCHO being oxidized by surface active hydroxyl groups to formate;subsequently,the formate being oxidized by hydroxyl groups to H_(2)O and CO_(2).This study provides a promising strategy for designing high-performance noble metal catalysts for HCHO catalytic oxidation.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22076063,22076098,and 21477047)the Natural Science Foundation of Shandong Province(No.ZR2020MB033)+1 种基金the Key Laboratory of Photochemical Conversion and Optoelectronic Materials,TIPC,CAS(No.PCOM202106)the program for Taishan Scholars of Shandong Province,and the Science and Technology Programof the University of Jinan(No.XKY2111).
文摘Volatile Organic Compounds(VOCs)are highly harmful to human beings and other organisms,and thus the elimination of VOCs is extremely urgent.Here,La-Si co-doped TiO_(2)microsphere photocatalysts,which were prepared by a hydrothermal method,exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO_(2).The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers,as verified by the electrochemical results in combination with density functional theory calculations.In addition,the Si dopant changed the microstructure and surface acidity,while the addition of La promoted the separation efficiency of charge carriers.More interestingly,it was found that singlet oxygen was the key species in the activation of molecular dioxygen,and it played a pivotal role in the photocatalytic decomposition of formaldehyde.This work provides a novel strategy for the selective activation of dioxygen for use in the decomposition of formaldehyde.
基金supported by the Youth Innovation Promotion Association,CAS(No.2020310)Sanming University(No.23YG05).
文摘Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst(Pd/SiO_(2))by adding alkali metal potassium(K).A formidable promotion effect was observed when the K doping to Pd/SiO_(2) catalysts.It achieves a conversion rate of 93%for 270 ppmV of HCHO to harmless CO_(2) and H_(2)O at a weight hourly space velocity(WHSV)of 300,000 mL/(g·hr)at 25℃.Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition,which not only stabilized Pd species on the carrier surface but alsomarkedly enhanced its dispersal on the SiO_(2) carrier.The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO_(2) catalysts.The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover,which also contributed to elevating the electron density on the Pd sites.Meanwhile,the oxygen vacancies favored the O_(2) activation to formmore reactive oxygen species participating in the HCHO oxidation reaction,thus improving the performance of Pd/SiO_(2) catalysts displayed for HCHO oxidation.This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.
基金National Key Research and Development Program (No.2018YFC1802605)Sichuan Regional Innovation Cooperation Project (No.2022YFQ0081)+1 种基金the Chengdu Key R&D Support Plan Project (No.2022-YF05-00357-SN)the Sichuan University-Yibin City School and City Strategic Cooperation Project (No.2020CDYB-9)。
文摘Formaldehyde is a pollutant that significantly affects the indoor air quality.However,conventional remediation approaches can be challenging to deal with low-concentration formaldehyde in an indoor environment.In this study,Photocatalysts of Ag/graphitic carbon nitride(g-C_(3)N_(4))/Ni with 3D reticulated coral structure were prepared by thermal polymerization and liquid phase photo-deposition,using nickel foam(NF)as the carrier.Experiments demonstrated that when the Ag concentration was 3%,and the relative humidity was 60%,the Ni/Ag/g-C_(3)N_(4)showed the maximum degradation rate of formaldehyde at 90.19%under visible light irradiation,and the formaldehyde concentration after degradation was lower than the Hygienic standard stated by the Chinese Government.The porous structure of Ni/Ag/g-C_(3)N_(4)and the formation of Schottky junctions promoted the Adsorption efficiency and degradation of formaldehyde,while the nickel foam carrier effectively promoted the desorption of degradation products.Meanwhile,the degradation rate was only reduced by3.4%after 16 recycles,the three-dimensional porous structure extended the lifetime of the photocatalyst.This study provides a new strategy for the degradation of indoor formaldehyde at low concentrations.
基金Funded by the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project of Yunnan Province(No.202105AC160054)。
文摘In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification.
基金financially supported by the National Natural Science Foundation of China(No.61973223)the Innovative Talents in Colleges and Universities in Liaoning Province(No.2020389)+3 种基金Liao Ning Revitalization Talents Program(No.XLYC2007051)Liaoning Educational Department Foundation(No.LJKMZ20220762)the Natural Science Foundation of Liaoning Province(No.2021-MS-257)the Young and Middle-aged Scientific and Technological Innovation Talents of Shenyang Science and Technology Bureau(No.RC200352)。
文摘Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical application.Therefore,developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic.In this study,Ti_(3)C_(2)Tx/SnO_(2)heterostructures were constructed,which could selectively detect formaldehyde at room temperature with a response value of 29.16%(10×10^(-6)).In addition,the sensor shows a remarkable theoretical detection limit of 5.09×10^(-9)and good longterm stability.Density functional theory(DFT)simulations reveal that SnO_(2)nano spheres provide the majority of adsorption sites that strongly interact with formaldehyde.Meanwhile,Ti_(3)C_(2)T_(x)acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature.Moreover,the formation of p-n heterostructures between SnO_(2)and Ti_(3)C_(2)T_(x)boosts the Schottky barrier at the interface,which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas.This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Nos.XDA23010300 and XDA23010000)National Science Foundation of China,China(Nos.52200137 and 21725102)+1 种基金the Plan for“National Youth Talents”GuangDong Basic and Applied Basic Research Foundation(No.2021A1515110427)。
文摘Developing low-loading single-atom catalysts with superior catalytic activity and selectivity in formaldehyde(HCHO)oxidation at room temperature remains challenging.Herein,ZrO_(2)nanoparticles coupled low-loading Ir single atoms in N-doped carbon(Ir_(1)-N-C/ZrO_(2))was prepared.The optimal Ir_(1)-N-C/ZrO_(2)with 0.25 wt%Ir loading delivers the high HCHO removal and conversion efficiency(>95%)at 20℃,which is higher than that over Ir_(1)-N-C with the same Ir loading.The specific rate can reach 1285.6 mmol gIr^(-1)h^(-1),surpassing the Ir based catalysts reported to date.Density functional theory calculation results and electron spin resonance spectra indicate that the introduction of Zr O_(2)nanoparticles modulate the electronic structure of the Ir single atoms,promoting O_(2)activation to·O_(2)^(–).Moreover,the Ir-C-Zr channel is favorable for the dissociation of·O_(2)^(–)to active oxygen atom(*O),and further accelerates the transformation of HCHO and intermediates(dioxymethylene and formates)to CO_(2)and H_(2)O.This work provides a facile strategy to design low-loading single-atom catalysts with high catalytic activity toward HCHO oxidation.
基金supported by the National Natural Science Foundation of China(No.21774139)China,Key Research and Development Program of Shanxi Province,China(No,202102040201009)special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology and the Fund for Shanxi“1331 Project”.Thanks to Ningbo Kejiang Culture Sci.&Tech.Development Co.,Ltd.for the help in schematic drawing。
文摘Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.
基金supported by the National Natural Science Foundation of China(Nos.21876008 and 22276009).
文摘The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for the photocatalytic removal of gaseous formaldehyde(a volatile organic compound).Among the obtained catalysts,the presence of oxygen vacancies restricted photogenerated electron and holes recombination.98.00%removal of gaseous formaldehyde in 150 min could be achieved over TNS600 by xenon lamp.The removal efficiency for formaldehyde was well retained for five cycle experiment.The results from PL,TRPL and EIS revealed that TNS600 had the best separation efficiency of photogenerated electrons and holes,and the enhanced charge separation led to a significant increase in photocatalytic activity.The photocatalytic oxidation mechanism indicated that the ^(•)OH and ^(•)O_(2)−radicals were mainly involved in the efficient elimination of gaseous formaldehyde and were able to mineralize formaldehyde to H_(2)O and CO_(2).
文摘Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality.