Background:Central Himalayan forested catchments provide fresh water supply and innumerable ecosystem services to millions of people.Hence,the understanding of linkages between forests and water is very crucial for av...Background:Central Himalayan forested catchments provide fresh water supply and innumerable ecosystem services to millions of people.Hence,the understanding of linkages between forests and water is very crucial for availability and quality of water at catchment scale.Therefore,the present study aims to understand the hydrological response of two forested catchments(namely,Arnigad and Bansigad)in the Central Himalayan Region.Methods:Threeyears’data(March,2008 to February,2011)were collected from meteorological and hydrological stations in Arnigad and Bansigad catchments.The present paper describes the mean hydrological response of these forested catchments investigated through detailed field investigation.Results:The annual hyetograph analysis revealed that the rainfall at both the catchments was highly seasonal,and wetperiod(June–September)plays a key role in catchment functioning.Exceedance of rainfall threshold of^200 mm(~10%of annual rainfall)significantly increased streamflow generation in both catchments.In Arnigad,the stream was perennial with a mean baseflow of^83mm per month(~6%of annual baseflow)whereas,Bansigad had greater seasonality due to lack of streamflow during the prewetperiod(March–May).Separation of hydrographs in Arnigad and Bansigad catchments i.e.stormflow(6%and 31%,respectively)and baseflow(50%and 32%,respectively)helped to understand the probability of flooding during wetperiod and drought during dryperiod.The forest ecosystem in Arnigad displayed healthier hydrological functioning in terms of reduced stormflow(82%),and enhanced baseflow(52%),soil moisture(13%),steady infiltration rate(22%)and lag time(~15 min)relative to Bansigad.These enhanced values indicated soil capability to store water in the forested catchment(Arnigad)and helped to understand the volume of water(discharge)that was available during dryperiod.The lower denudation rate at Arnigad by 41%resulted in decreased suspended sediment(18%)and bed load(75%)compared to Bansigad.Further,the enhanced dissolved solids in the Arnigad stream resulted from the higher organic matter generated in the forest floor.Conclusion:This study shows that rainfall during the wetperiod was the main driver of hydrological functioning,whereas,forests provided substantial services by regulating water balance,soil moisture and sediment budget through different mechanisms of forest components at catchmentscale in the Central Himalayan Region.展开更多
In order to investigate sediment-loading processes in a catchment, the daily time series of river discharge and sediment load were applied to a semi-distributed model, the Soil and Water Assessment Tool (SWAT). The ti...In order to investigate sediment-loading processes in a catchment, the daily time series of river discharge and sediment load were applied to a semi-distributed model, the Soil and Water Assessment Tool (SWAT). The time series of discharge and sediment load were obtained by monitoring the river stage and water turbidity of the Oikamanai River, Hokkaido, Japan, in the rainfall season (April-November) of 2011-2014. The catchment is forested (ca 90% area) but underlain by the Neogene sedimentary rocks with currently active faults and forest soils with tephra layers, which tend to frequently produce slope failure such as landslide and bank collapse by rainfall or snowmelt. The water turbidity, T, in ppm was converted into suspended sediment concentration, SSC, in g/L by applying the linear relationship between T and SSC. The acquisition of the time series of discharge, Q (m<sup>3</sup>/s) and sediment load, L (=Q·SSC in g/s) of the river allowed us to distinguish the fluvial sediment transport, accompanied by slope failure in the upstream, from that under no slope failure. The SWAT was used to simulate soil erosion and identify the region prone to the soil erosion in the Oikamanai River basin. The model’s results showed a satisfactory agreement between daily observed and simulated sediment load as indicated by the high Nash-Sutcliffe efficiency. This evidences that the upper mountainous region of the catchment provides a main sediment source, accompanied by slope failure.展开更多
Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,es...Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.展开更多
The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. T...The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. The water storage capacity of soil depends on its depth and capacity to retain water under gravita- tional drainage and evapotranspiration. The latter can be studied through soil water retention curve (SWRC), which is closely related to soil properties such as texture, bulk density, porosity, soil organic carbon conteMt, and so on. The present study represented SWRCs using HYDRUS-1D. In the present study, we measured pl^ysical and hydraulic properties of soil samples collected from Sabina przewalskii forest (south-facing slope with highest solar radiation), shrubs (west-facing slope with medium radiation), and Picea crassifolia forest (north-facing slope with lowest radiation), and analyzed the differences in soil water storage capacity of these soil samples. Soil water content of those three vegetation covers were also measured to validate the soil water storage capacity and to analyze the relationship between soil organic matter content and soil water content. Statistical analysis showed that different vegetation covers could lead to different soil bulk densities and differences in soil water retention on the three slope aspects. Sand content, porosity, and organic carbon content of the P. crassifolia forest were rela- tively greater compared with those of the S. przewalskii forest and shrubs. However, silt content and soil bulk density were relatively smaller than those in the S. przewalskii forest and shrubs. In addition, there was a sig- nificant linear positive relationship between averaged soil water content and soil organic matter content (P〈0.0001). However, this relationship is not significant in the P. crassifolia forest. As depicted in the SWRCs, the water storage capacity of the soil was 39.14% and 37.38% higher in the P. crassifolia forest than in the S. przewalskii forest and shrubs, respectively, at a similar soil depth.展开更多
The emergence of Payment for Ecosystem Services (PES) concept has raised expectations that ecosystem conservation can be achieved through popular payments rather than through unpopular measures of command and contro...The emergence of Payment for Ecosystem Services (PES) concept has raised expectations that ecosystem conservation can be achieved through popular payments rather than through unpopular measures of command and control. A study on PES was conducted in Zomba Mountain Forest (ZMF) catchment area in southern Malawi between August and December 2009. The aim was to assess stakeholders' role that would promote payment for ecosystem services as a management tool. A purposive sampling was used to identify the respondents who were randomly sampled for interviews. The findings show that PES can be used as a management tool in ZMF as there are key stakeholders who benefit from the catchment area in terms of services. While there is moderate level of PES awareness among the community and other stakeholders, the current forest policy does not address PES which may derail implementation of a fully fledged PES arrangement. The study revealed that existing management challenges originate from inadequate funding that ZMF Reserve gets from government. However, this challenge offers opportunities to stakeholders through PES to contribute and participate in conserving ZMF for sustained flow of benefits.展开更多
Understanding the effects of land use change on the hydrological cycle is very important for development of sustainable water resource in an upland field catchment.In this study,soil and hydrological properties in an ...Understanding the effects of land use change on the hydrological cycle is very important for development of sustainable water resource in an upland field catchment.In this study,soil and hydrological properties in an upland field catchment,which was reclaimed partially from a forest catchment,were compared with another forest catchment.The soil properties of surface and subsurface layers were investigated in the two catchments.The soil was compacted and waterholding capacity of soil in the upland field catchment became smaller after the reclamation from forest to upland field,which decreased infiltration rate and water storage in the soil layers.We found that peak discharge and direct runoff in the upland field catchment increased compared with the forest catchment.Annual evapotranspiration from the upland field catchment tended to be lower due to the change in vegetation type and soil properties.Furthermore,a semi-distributed hydrological model was applied in the upland field catchment to understand the integrated effects of reclamation on the hydrological cycle.The model parameters,which were determined using a nonlinear optimization technique—the Shuffled Complex Evolution method(SCE),were compared between the two catchments.The Nash and Sutcliffe coefficient was used to evaluate the model performance.The simulated results indicated that evapotranspiration was decreased and change in discharge was more obvious in the surface layer.We considered that declined infiltration and water storage and increased peak discharge and direct runoff have a negative impact on water resources in the upland field catchment.This study will provide information for forest managers in planning and making decisions for land and water resource management.展开更多
文摘Background:Central Himalayan forested catchments provide fresh water supply and innumerable ecosystem services to millions of people.Hence,the understanding of linkages between forests and water is very crucial for availability and quality of water at catchment scale.Therefore,the present study aims to understand the hydrological response of two forested catchments(namely,Arnigad and Bansigad)in the Central Himalayan Region.Methods:Threeyears’data(March,2008 to February,2011)were collected from meteorological and hydrological stations in Arnigad and Bansigad catchments.The present paper describes the mean hydrological response of these forested catchments investigated through detailed field investigation.Results:The annual hyetograph analysis revealed that the rainfall at both the catchments was highly seasonal,and wetperiod(June–September)plays a key role in catchment functioning.Exceedance of rainfall threshold of^200 mm(~10%of annual rainfall)significantly increased streamflow generation in both catchments.In Arnigad,the stream was perennial with a mean baseflow of^83mm per month(~6%of annual baseflow)whereas,Bansigad had greater seasonality due to lack of streamflow during the prewetperiod(March–May).Separation of hydrographs in Arnigad and Bansigad catchments i.e.stormflow(6%and 31%,respectively)and baseflow(50%and 32%,respectively)helped to understand the probability of flooding during wetperiod and drought during dryperiod.The forest ecosystem in Arnigad displayed healthier hydrological functioning in terms of reduced stormflow(82%),and enhanced baseflow(52%),soil moisture(13%),steady infiltration rate(22%)and lag time(~15 min)relative to Bansigad.These enhanced values indicated soil capability to store water in the forested catchment(Arnigad)and helped to understand the volume of water(discharge)that was available during dryperiod.The lower denudation rate at Arnigad by 41%resulted in decreased suspended sediment(18%)and bed load(75%)compared to Bansigad.Further,the enhanced dissolved solids in the Arnigad stream resulted from the higher organic matter generated in the forest floor.Conclusion:This study shows that rainfall during the wetperiod was the main driver of hydrological functioning,whereas,forests provided substantial services by regulating water balance,soil moisture and sediment budget through different mechanisms of forest components at catchmentscale in the Central Himalayan Region.
文摘In order to investigate sediment-loading processes in a catchment, the daily time series of river discharge and sediment load were applied to a semi-distributed model, the Soil and Water Assessment Tool (SWAT). The time series of discharge and sediment load were obtained by monitoring the river stage and water turbidity of the Oikamanai River, Hokkaido, Japan, in the rainfall season (April-November) of 2011-2014. The catchment is forested (ca 90% area) but underlain by the Neogene sedimentary rocks with currently active faults and forest soils with tephra layers, which tend to frequently produce slope failure such as landslide and bank collapse by rainfall or snowmelt. The water turbidity, T, in ppm was converted into suspended sediment concentration, SSC, in g/L by applying the linear relationship between T and SSC. The acquisition of the time series of discharge, Q (m<sup>3</sup>/s) and sediment load, L (=Q·SSC in g/s) of the river allowed us to distinguish the fluvial sediment transport, accompanied by slope failure in the upstream, from that under no slope failure. The SWAT was used to simulate soil erosion and identify the region prone to the soil erosion in the Oikamanai River basin. The model’s results showed a satisfactory agreement between daily observed and simulated sediment load as indicated by the high Nash-Sutcliffe efficiency. This evidences that the upper mountainous region of the catchment provides a main sediment source, accompanied by slope failure.
基金particilly (Dalila Serpa,Jan Jacob Keizer)supported by CESAM (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)by FCT/MCTES,through national fundsthe project WAFLE (PTDC/ASP-SIL/31573/2017)funded by FEDER,through COMPETE2020–Programa OperacionalCompetitividade e Internacionalizacao (POCI)by national funds (OE),through FCT/MCTES。
文摘Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.
基金sponsored by the National Natural Science Foundation of China (91025015)
文摘The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. The water storage capacity of soil depends on its depth and capacity to retain water under gravita- tional drainage and evapotranspiration. The latter can be studied through soil water retention curve (SWRC), which is closely related to soil properties such as texture, bulk density, porosity, soil organic carbon conteMt, and so on. The present study represented SWRCs using HYDRUS-1D. In the present study, we measured pl^ysical and hydraulic properties of soil samples collected from Sabina przewalskii forest (south-facing slope with highest solar radiation), shrubs (west-facing slope with medium radiation), and Picea crassifolia forest (north-facing slope with lowest radiation), and analyzed the differences in soil water storage capacity of these soil samples. Soil water content of those three vegetation covers were also measured to validate the soil water storage capacity and to analyze the relationship between soil organic matter content and soil water content. Statistical analysis showed that different vegetation covers could lead to different soil bulk densities and differences in soil water retention on the three slope aspects. Sand content, porosity, and organic carbon content of the P. crassifolia forest were rela- tively greater compared with those of the S. przewalskii forest and shrubs. However, silt content and soil bulk density were relatively smaller than those in the S. przewalskii forest and shrubs. In addition, there was a sig- nificant linear positive relationship between averaged soil water content and soil organic matter content (P〈0.0001). However, this relationship is not significant in the P. crassifolia forest. As depicted in the SWRCs, the water storage capacity of the soil was 39.14% and 37.38% higher in the P. crassifolia forest than in the S. przewalskii forest and shrubs, respectively, at a similar soil depth.
文摘The emergence of Payment for Ecosystem Services (PES) concept has raised expectations that ecosystem conservation can be achieved through popular payments rather than through unpopular measures of command and control. A study on PES was conducted in Zomba Mountain Forest (ZMF) catchment area in southern Malawi between August and December 2009. The aim was to assess stakeholders' role that would promote payment for ecosystem services as a management tool. A purposive sampling was used to identify the respondents who were randomly sampled for interviews. The findings show that PES can be used as a management tool in ZMF as there are key stakeholders who benefit from the catchment area in terms of services. While there is moderate level of PES awareness among the community and other stakeholders, the current forest policy does not address PES which may derail implementation of a fully fledged PES arrangement. The study revealed that existing management challenges originate from inadequate funding that ZMF Reserve gets from government. However, this challenge offers opportunities to stakeholders through PES to contribute and participate in conserving ZMF for sustained flow of benefits.
文摘Understanding the effects of land use change on the hydrological cycle is very important for development of sustainable water resource in an upland field catchment.In this study,soil and hydrological properties in an upland field catchment,which was reclaimed partially from a forest catchment,were compared with another forest catchment.The soil properties of surface and subsurface layers were investigated in the two catchments.The soil was compacted and waterholding capacity of soil in the upland field catchment became smaller after the reclamation from forest to upland field,which decreased infiltration rate and water storage in the soil layers.We found that peak discharge and direct runoff in the upland field catchment increased compared with the forest catchment.Annual evapotranspiration from the upland field catchment tended to be lower due to the change in vegetation type and soil properties.Furthermore,a semi-distributed hydrological model was applied in the upland field catchment to understand the integrated effects of reclamation on the hydrological cycle.The model parameters,which were determined using a nonlinear optimization technique—the Shuffled Complex Evolution method(SCE),were compared between the two catchments.The Nash and Sutcliffe coefficient was used to evaluate the model performance.The simulated results indicated that evapotranspiration was decreased and change in discharge was more obvious in the surface layer.We considered that declined infiltration and water storage and increased peak discharge and direct runoff have a negative impact on water resources in the upland field catchment.This study will provide information for forest managers in planning and making decisions for land and water resource management.