It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouri...Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources.Particularly considering the implications of the aggressive GHG emission targets,accurate GHI forecasting has become vital for developing,designing,and operational managing solar energy systems.This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA(Autoregressive Integrated Moving Average),Elaman NN(Elman Neural Network),RBFN(Radial Basis Function Neural Network),SVM(Support Vector Machine),LSTM(Long Short-Term Memory),Persistent,BPN(Back Propagation Neural Network),MLP(Multilayer Perceptron Neural Network),RF(Random Forest),and XGBoost(eXtreme Gradient Boosting)for assessing multi-seasonal forecasting of GHI.Used the India region data to evaluate the models’performance and forecasting ability.Research using forecasting models for seasonal Global Horizontal Irradiance(GHI)forecasting in winter,spring,summer,monsoon,and autumn.Substantiated performance effectiveness through evaluation metrics,such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE),and R-squared(R^(2)),coded using Python programming.The performance experimentation analysis inferred that the most accurate forecasts in all the seasons compared to the other forecasting models the Random Forest and eXtreme Gradient Boosting,are the superior and competing models that yield Winter season-based forecasting XGBoost is the best forecasting model with MAE:1.6325,RMSE:4.8338,and R^(2):0.9998.Spring season-based forecasting XGBoost is the best forecasting model with MAE:2.599599,RMSE:5.58539,and R^(2):0.999784.Summer season-based forecasting RF is the best forecasting model with MAE:1.03843,RMSE:2.116325,and R^(2):0.999967.Monsoon season-based forecasting RF is the best forecasting model with MAE:0.892385,RMSE:2.417587,and R^(2):0.999942.Autumn season-based forecasting RF is the best forecasting model with MAE:0.810462,RMSE:1.928215,and R^(2):0.999958.Based on seasonal variations and computing constraints,the findings enable energy system operators to make helpful recommendations for choosing the most effective forecasting models.展开更多
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment...Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method.展开更多
In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,...In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness.展开更多
Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,...Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,and external environmental factors,scientifically predict the scale,direction,and fluctuation of cash flow within a certain period in the future.This article focuses on the application of cash flow forecasting models in enterprise investment and financing decisions,sorts out the types and core functions of the models,analyzes their specific roles in investment project screening,financing plan formulation,risk prevention and control,and fund allocation,points out the existing problems in current applications,and proposes optimization paths.Research shows that the scientific application of cash flow forecasting models can enhance the accuracy and rationality of enterprises’investment and financing decisions,and help enterprises achieve sustainable development.展开更多
Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive ...Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive neural network called echo state network(ESN),the method of complementary ensemble empirical mode decomposition(EEMD)and the complexity theory of sample entropy(SampEn).Firstly,we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently different.Then,we use ESN to build a forecasting model for each subsequence,selecting the optimal model parameters.Finally,we use the real data collected from the geomagnetic observatory to conduct simulations.The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field,and is superior to the least square support vector machine(LSSVM)model.The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3.展开更多
作为天气系统的主要组成部分,三维云仿真在军事、航空等领域都起着重要作用.目前主流的边界体积层次结构(Bounding Volume Hierarchy,BVH)在处理形状不均匀且体积较大的云时存在渲染效率低下的问题,为此提出一种基于优化BVH算法的云产...作为天气系统的主要组成部分,三维云仿真在军事、航空等领域都起着重要作用.目前主流的边界体积层次结构(Bounding Volume Hierarchy,BVH)在处理形状不均匀且体积较大的云时存在渲染效率低下的问题,为此提出一种基于优化BVH算法的云产品渲染方法.将WRF(Weather Research and Forecasting,天气研究与预报)模型网格点中的数据作为云基元,利用Z-order Hilbert曲线对其进行空间排序,结合云基元密度优化BVH算法,提高计算效率.提出ONS(Overlapping Node Sets,重叠节点结构)降低数据存取耗时.优化BVH算法能够减少不必要的光线和三角形面之间的相交测试次数,并解决边界体无效重叠问题.仿真实验显示,SAH(Surface Area Heuristic,表面积启发式)成本较同类最优算法可提升15.6%,EPO(Effective Partial Overlap,有效重叠部分)可提升10%,构建时间减少100%以上,在任意云场景中优化BVH算法的计算效率较同类算法都有显著提高,表明其能实现WRF云产品的快速渲染.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Envi...为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。展开更多
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ...A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.展开更多
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f...For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting.展开更多
In order to extend the forecasting period of flood and improve the accuracy of flood forecasting,this paper took Bailian River Reservoir which located in Huanggang City of Hubei Province as an example and carried out ...In order to extend the forecasting period of flood and improve the accuracy of flood forecasting,this paper took Bailian River Reservoir which located in Huanggang City of Hubei Province as an example and carried out basin flood simulation and forecasting by coupling the quantitative precipitation forecasting products of numerical forecast operation model of Institute of Heavy Rain in Wuhan(WRF)and the European Center for Medium-range Weather Forecasts(ECMWF)with the three water sources Xin an River model.The experimental results showed that the spatiotemporal distribution of rainfall predicted by EC is closer to the actual situation compared to WRF;the efficiency coefficient and peak time difference of EC used for flood forecasting are comparable to WRF,but the average relative error of flood peaks is about 14%smaller than WRF.Overall,the precipitation forecasting products of the two numerical models can be used for flood forecasting in the Bailian River basin.Some forecasting indicators have certain reference value,and there is still significant room for improvement in the forecasting effects of the two models.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
文摘Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources.Particularly considering the implications of the aggressive GHG emission targets,accurate GHI forecasting has become vital for developing,designing,and operational managing solar energy systems.This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA(Autoregressive Integrated Moving Average),Elaman NN(Elman Neural Network),RBFN(Radial Basis Function Neural Network),SVM(Support Vector Machine),LSTM(Long Short-Term Memory),Persistent,BPN(Back Propagation Neural Network),MLP(Multilayer Perceptron Neural Network),RF(Random Forest),and XGBoost(eXtreme Gradient Boosting)for assessing multi-seasonal forecasting of GHI.Used the India region data to evaluate the models’performance and forecasting ability.Research using forecasting models for seasonal Global Horizontal Irradiance(GHI)forecasting in winter,spring,summer,monsoon,and autumn.Substantiated performance effectiveness through evaluation metrics,such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE),and R-squared(R^(2)),coded using Python programming.The performance experimentation analysis inferred that the most accurate forecasts in all the seasons compared to the other forecasting models the Random Forest and eXtreme Gradient Boosting,are the superior and competing models that yield Winter season-based forecasting XGBoost is the best forecasting model with MAE:1.6325,RMSE:4.8338,and R^(2):0.9998.Spring season-based forecasting XGBoost is the best forecasting model with MAE:2.599599,RMSE:5.58539,and R^(2):0.999784.Summer season-based forecasting RF is the best forecasting model with MAE:1.03843,RMSE:2.116325,and R^(2):0.999967.Monsoon season-based forecasting RF is the best forecasting model with MAE:0.892385,RMSE:2.417587,and R^(2):0.999942.Autumn season-based forecasting RF is the best forecasting model with MAE:0.810462,RMSE:1.928215,and R^(2):0.999958.Based on seasonal variations and computing constraints,the findings enable energy system operators to make helpful recommendations for choosing the most effective forecasting models.
基金supported by the Startup Grant(PG18929)awarded to F.Shokoohi.
文摘Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method.
文摘In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness.
文摘Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,and external environmental factors,scientifically predict the scale,direction,and fluctuation of cash flow within a certain period in the future.This article focuses on the application of cash flow forecasting models in enterprise investment and financing decisions,sorts out the types and core functions of the models,analyzes their specific roles in investment project screening,financing plan formulation,risk prevention and control,and fund allocation,points out the existing problems in current applications,and proposes optimization paths.Research shows that the scientific application of cash flow forecasting models can enhance the accuracy and rationality of enterprises’investment and financing decisions,and help enterprises achieve sustainable development.
基金supported by the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-221)。
文摘Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive neural network called echo state network(ESN),the method of complementary ensemble empirical mode decomposition(EEMD)and the complexity theory of sample entropy(SampEn).Firstly,we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently different.Then,we use ESN to build a forecasting model for each subsequence,selecting the optimal model parameters.Finally,we use the real data collected from the geomagnetic observatory to conduct simulations.The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field,and is superior to the least square support vector machine(LSSVM)model.The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3.
文摘作为天气系统的主要组成部分,三维云仿真在军事、航空等领域都起着重要作用.目前主流的边界体积层次结构(Bounding Volume Hierarchy,BVH)在处理形状不均匀且体积较大的云时存在渲染效率低下的问题,为此提出一种基于优化BVH算法的云产品渲染方法.将WRF(Weather Research and Forecasting,天气研究与预报)模型网格点中的数据作为云基元,利用Z-order Hilbert曲线对其进行空间排序,结合云基元密度优化BVH算法,提高计算效率.提出ONS(Overlapping Node Sets,重叠节点结构)降低数据存取耗时.优化BVH算法能够减少不必要的光线和三角形面之间的相交测试次数,并解决边界体无效重叠问题.仿真实验显示,SAH(Surface Area Heuristic,表面积启发式)成本较同类最优算法可提升15.6%,EPO(Effective Partial Overlap,有效重叠部分)可提升10%,构建时间减少100%以上,在任意云场景中优化BVH算法的计算效率较同类算法都有显著提高,表明其能实现WRF云产品的快速渲染.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
文摘为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。
基金jointly supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KZCX2EW203)the National Key Basic Research Program of China(Grant No.2013CB430105)the National Department of Public Benefit Research Foundation(Grant No.GYHY201006031)
文摘A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.
文摘For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting.
基金Supported by Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(2023BHR-Y26)Innovation Project Fund of Wuhan Metropolitan Area Meteorological Joint Science and Technology(WHCSQY202305)+1 种基金Innovation and Development Special Project of China Meteorological Administration(CXFZ2022J019)Project of Huanggang Meteorological Bureau's Scientific Research(2022Y02).
文摘In order to extend the forecasting period of flood and improve the accuracy of flood forecasting,this paper took Bailian River Reservoir which located in Huanggang City of Hubei Province as an example and carried out basin flood simulation and forecasting by coupling the quantitative precipitation forecasting products of numerical forecast operation model of Institute of Heavy Rain in Wuhan(WRF)and the European Center for Medium-range Weather Forecasts(ECMWF)with the three water sources Xin an River model.The experimental results showed that the spatiotemporal distribution of rainfall predicted by EC is closer to the actual situation compared to WRF;the efficiency coefficient and peak time difference of EC used for flood forecasting are comparable to WRF,but the average relative error of flood peaks is about 14%smaller than WRF.Overall,the precipitation forecasting products of the two numerical models can be used for flood forecasting in the Bailian River basin.Some forecasting indicators have certain reference value,and there is still significant room for improvement in the forecasting effects of the two models.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.