A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ...A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.展开更多
In weather forecasting,generating atmospheric variables for regions with complex topography,such as the Andean regions with peaks reaching 6500 m above sea level,poses significant challenges.Traditional regional clima...In weather forecasting,generating atmospheric variables for regions with complex topography,such as the Andean regions with peaks reaching 6500 m above sea level,poses significant challenges.Traditional regional climate models often struggle to accurately represent the atmospheric behavior in such areas.Furthermore,the capability to produce high spatio-temporal resolution data(less than 27 km and hourly)is limited to a few institutions globally due to the substantial computational resources required.This study presents the results of atmospheric data generated using a new type of artificial intelligence(AI)models,aimed to reduce the computational cost of generating downscaled climate data using climate regional models like the Weather Research and Forecasting(WRF)model over the Andes.The WRF model was selected for this comparison due to its frequent use in simulating atmospheric variables in the Andes.Our results demonstrate a higher downscaling performance for the four target weather variables studied(temperature,relative humidity,zonal and meridional wind)over coastal,mountain,and jungle regions.Moreover,this AI model offers several advantages,including lower computational costs compared to dynamic models like WRF and continuous improvement potential with additional training data.展开更多
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouri...Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources.Particularly considering the implications of the aggressive GHG emission targets,accurate GHI forecasting has become vital for developing,designing,and operational managing solar energy systems.This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA(Autoregressive Integrated Moving Average),Elaman NN(Elman Neural Network),RBFN(Radial Basis Function Neural Network),SVM(Support Vector Machine),LSTM(Long Short-Term Memory),Persistent,BPN(Back Propagation Neural Network),MLP(Multilayer Perceptron Neural Network),RF(Random Forest),and XGBoost(eXtreme Gradient Boosting)for assessing multi-seasonal forecasting of GHI.Used the India region data to evaluate the models’performance and forecasting ability.Research using forecasting models for seasonal Global Horizontal Irradiance(GHI)forecasting in winter,spring,summer,monsoon,and autumn.Substantiated performance effectiveness through evaluation metrics,such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE),and R-squared(R^(2)),coded using Python programming.The performance experimentation analysis inferred that the most accurate forecasts in all the seasons compared to the other forecasting models the Random Forest and eXtreme Gradient Boosting,are the superior and competing models that yield Winter season-based forecasting XGBoost is the best forecasting model with MAE:1.6325,RMSE:4.8338,and R^(2):0.9998.Spring season-based forecasting XGBoost is the best forecasting model with MAE:2.599599,RMSE:5.58539,and R^(2):0.999784.Summer season-based forecasting RF is the best forecasting model with MAE:1.03843,RMSE:2.116325,and R^(2):0.999967.Monsoon season-based forecasting RF is the best forecasting model with MAE:0.892385,RMSE:2.417587,and R^(2):0.999942.Autumn season-based forecasting RF is the best forecasting model with MAE:0.810462,RMSE:1.928215,and R^(2):0.999958.Based on seasonal variations and computing constraints,the findings enable energy system operators to make helpful recommendations for choosing the most effective forecasting models.展开更多
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment...Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method.展开更多
In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,...In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness.展开更多
Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,...Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,and external environmental factors,scientifically predict the scale,direction,and fluctuation of cash flow within a certain period in the future.This article focuses on the application of cash flow forecasting models in enterprise investment and financing decisions,sorts out the types and core functions of the models,analyzes their specific roles in investment project screening,financing plan formulation,risk prevention and control,and fund allocation,points out the existing problems in current applications,and proposes optimization paths.Research shows that the scientific application of cash flow forecasting models can enhance the accuracy and rationality of enterprises’investment and financing decisions,and help enterprises achieve sustainable development.展开更多
Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive ...Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive neural network called echo state network(ESN),the method of complementary ensemble empirical mode decomposition(EEMD)and the complexity theory of sample entropy(SampEn).Firstly,we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently different.Then,we use ESN to build a forecasting model for each subsequence,selecting the optimal model parameters.Finally,we use the real data collected from the geomagnetic observatory to conduct simulations.The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field,and is superior to the least square support vector machine(LSSVM)model.The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep...Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.展开更多
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced...Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
[Objective] The aim was to establish drought forecasting model with high precision. [Method] With an ARIMA regression model, the research performed Palmer Drought mode(PDSI) time series modeling analysis of Henan Pr...[Objective] The aim was to establish drought forecasting model with high precision. [Method] With an ARIMA regression model, the research performed Palmer Drought mode(PDSI) time series modeling analysis of Henan Province based on PDSI time series and DPS(Data Processing Software) in order to build drought forecasting model. [Result] It is feasible to perform drought forecasting with appropriate parameters. [Conclusion] ARIMA model is practical and more precise in PDSI-based drought analysis and forecasting.展开更多
The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is pr...The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model.展开更多
The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used w...The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.展开更多
おhe water-bearing numerical model is undergone all round examinations during the operational forecasting experiments from 1994 to 1996. A lot of difficult problems arising from the model′s water-bearing are successf...おhe water-bearing numerical model is undergone all round examinations during the operational forecasting experiments from 1994 to 1996. A lot of difficult problems arising from the model′s water-bearing are successfully resolved in these experiments through developing and using a series of technical measures. The operational forecasting running of the water-bearing numerical model is realized stably and reliably, and satisfactory forecasts are obtained.展开更多
基金jointly supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KZCX2EW203)the National Key Basic Research Program of China(Grant No.2013CB430105)the National Department of Public Benefit Research Foundation(Grant No.GYHY201006031)
文摘A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.
文摘In weather forecasting,generating atmospheric variables for regions with complex topography,such as the Andean regions with peaks reaching 6500 m above sea level,poses significant challenges.Traditional regional climate models often struggle to accurately represent the atmospheric behavior in such areas.Furthermore,the capability to produce high spatio-temporal resolution data(less than 27 km and hourly)is limited to a few institutions globally due to the substantial computational resources required.This study presents the results of atmospheric data generated using a new type of artificial intelligence(AI)models,aimed to reduce the computational cost of generating downscaled climate data using climate regional models like the Weather Research and Forecasting(WRF)model over the Andes.The WRF model was selected for this comparison due to its frequent use in simulating atmospheric variables in the Andes.Our results demonstrate a higher downscaling performance for the four target weather variables studied(temperature,relative humidity,zonal and meridional wind)over coastal,mountain,and jungle regions.Moreover,this AI model offers several advantages,including lower computational costs compared to dynamic models like WRF and continuous improvement potential with additional training data.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
文摘Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources.Particularly considering the implications of the aggressive GHG emission targets,accurate GHI forecasting has become vital for developing,designing,and operational managing solar energy systems.This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA(Autoregressive Integrated Moving Average),Elaman NN(Elman Neural Network),RBFN(Radial Basis Function Neural Network),SVM(Support Vector Machine),LSTM(Long Short-Term Memory),Persistent,BPN(Back Propagation Neural Network),MLP(Multilayer Perceptron Neural Network),RF(Random Forest),and XGBoost(eXtreme Gradient Boosting)for assessing multi-seasonal forecasting of GHI.Used the India region data to evaluate the models’performance and forecasting ability.Research using forecasting models for seasonal Global Horizontal Irradiance(GHI)forecasting in winter,spring,summer,monsoon,and autumn.Substantiated performance effectiveness through evaluation metrics,such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE),and R-squared(R^(2)),coded using Python programming.The performance experimentation analysis inferred that the most accurate forecasts in all the seasons compared to the other forecasting models the Random Forest and eXtreme Gradient Boosting,are the superior and competing models that yield Winter season-based forecasting XGBoost is the best forecasting model with MAE:1.6325,RMSE:4.8338,and R^(2):0.9998.Spring season-based forecasting XGBoost is the best forecasting model with MAE:2.599599,RMSE:5.58539,and R^(2):0.999784.Summer season-based forecasting RF is the best forecasting model with MAE:1.03843,RMSE:2.116325,and R^(2):0.999967.Monsoon season-based forecasting RF is the best forecasting model with MAE:0.892385,RMSE:2.417587,and R^(2):0.999942.Autumn season-based forecasting RF is the best forecasting model with MAE:0.810462,RMSE:1.928215,and R^(2):0.999958.Based on seasonal variations and computing constraints,the findings enable energy system operators to make helpful recommendations for choosing the most effective forecasting models.
基金supported by the Startup Grant(PG18929)awarded to F.Shokoohi.
文摘Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method.
文摘In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness.
文摘Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,and external environmental factors,scientifically predict the scale,direction,and fluctuation of cash flow within a certain period in the future.This article focuses on the application of cash flow forecasting models in enterprise investment and financing decisions,sorts out the types and core functions of the models,analyzes their specific roles in investment project screening,financing plan formulation,risk prevention and control,and fund allocation,points out the existing problems in current applications,and proposes optimization paths.Research shows that the scientific application of cash flow forecasting models can enhance the accuracy and rationality of enterprises’investment and financing decisions,and help enterprises achieve sustainable development.
基金supported by the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-221)。
文摘Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive neural network called echo state network(ESN),the method of complementary ensemble empirical mode decomposition(EEMD)and the complexity theory of sample entropy(SampEn).Firstly,we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently different.Then,we use ESN to build a forecasting model for each subsequence,selecting the optimal model parameters.Finally,we use the real data collected from the geomagnetic observatory to conduct simulations.The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field,and is superior to the least square support vector machine(LSSVM)model.The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the National Natural Science Foundation of China[grant number 62376217]the Young Elite Scientists Sponsorship Program by CAST[grant number 2023QNRC001]the Joint Research Project for Meteorological Capacity Improvement[grant number 24NLTSZ003]。
文摘Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.
文摘Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
文摘[Objective] The aim was to establish drought forecasting model with high precision. [Method] With an ARIMA regression model, the research performed Palmer Drought mode(PDSI) time series modeling analysis of Henan Province based on PDSI time series and DPS(Data Processing Software) in order to build drought forecasting model. [Result] It is feasible to perform drought forecasting with appropriate parameters. [Conclusion] ARIMA model is practical and more precise in PDSI-based drought analysis and forecasting.
文摘The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model.
基金supported by the Public Welfare Special Fund Program(Meteorology)of the Chinese Ministry of Finance under Grant No.GYHY201106033
文摘The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.
文摘おhe water-bearing numerical model is undergone all round examinations during the operational forecasting experiments from 1994 to 1996. A lot of difficult problems arising from the model′s water-bearing are successfully resolved in these experiments through developing and using a series of technical measures. The operational forecasting running of the water-bearing numerical model is realized stably and reliably, and satisfactory forecasts are obtained.