Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
Interpretation of new multichannel seismic reflection data from the Andaman Forearc Basin(AFB) in the northern Indian Ocean is presented here. The highquality multichannel seismic data from the Andaman Forearc region ...Interpretation of new multichannel seismic reflection data from the Andaman Forearc Basin(AFB) in the northern Indian Ocean is presented here. The highquality multichannel seismic data from the Andaman Forearc region enable us to examine the seismic characters and to demarcate seismic sequences bounded by distinct unconformities. Ages of marked seismic horizons have been calibrated with available litholog data from nearby industry boreholes. Seismic interpretation of new data shows that the AFB is filled with * 4.5-s-two way travel time(TWT) thick Neogene to Recent sediments. The entire basin assemblage exhibits two distinct major sequences pertaining to the Neogene and Quaternary times. A large part of the basin is filled with intermittent mass transport deposits(MTD). We infer that the episodic uplift of the Invisible Bank, protuberance of the outerarc and regular deformation through reactivation of preexisting normal faults since the Pleistocene could be attributed as causal mechanisms for the MTDs. Strong bottom simulating reflectors are identified in the Late Miocene and younger sediments of the outerarc and AFB at a depth of * 0.6 s TWT and correspond to the presence of gas hydrates in this region. Our interpretations have significant implications for geodynamic as well as resource exploration in the AFB.展开更多
The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. Th...The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. This study reports apatite and zircon(U-Th)/He thermochronologic data from fourteen samples from Albian-Ypresian Xigaze forearc strata to determine the degree and timing of heating(burial) and subsequent cooling(exhumation) of two localities along the Yarlung suture zone(YSZ) near the towns of Saga and Lazi. Thirty-seven individual zircon He ages range from 31.5 ± 0.8 Ma to6.06 ± 0.18 Ma,with the majority of grains yielding ages between 30 Ma and 10 Ma. Twenty apatite He ages range from 12.7 ± 0.5 Ma to 3.9 ± 0.3 Ma,with the majority of grains yielding ages between 9 Ma and 4 Ma. These ages suggest that the Xigaze forearc basin was heated to 140-200 ℃ prior to cooling in Oligocene-Miocene time. Thermal modeling supports this interpretation and shows that the samples were buried to maximum temperatures of ~140-200 0 C by 35-21 Ma, immediately followed by the onset of exhumation. The zircon He and apatite He dataset and thermal modeling results indicate rapid exhumation from ~21 Ma to 15 Ma, and at ~4 Ma. The 21-15 Ma thermochronometric signal appears to be regionally extensive, affecting all the lithotectonic units of the YSZ, and coincides with movement along the north-vergent Great Counter Thrust system. Thrusting, coupled with enhanced erosion possibly related to the paleo-Yarlung River, likely drove Early Miocene cooling of the Xigaze forearc basin.In contrast, the younger phase of rapid exhumation at ~4 Ma was likely driven by enhanced rock uplift in the footwall of north-striking rifts that cross-cut the YSZ.展开更多
The Yarlung Zangbo Suture Zone (YZSZ), a major lineament in Tibet geological framework, which is accepted as the collision site between India and Asia (Allègre et al., 1984; Coulon et al., 1986; Dewey et al., 199...The Yarlung Zangbo Suture Zone (YZSZ), a major lineament in Tibet geological framework, which is accepted as the collision site between India and Asia (Allègre et al., 1984; Coulon et al., 1986; Dewey et al., 1990; Yin et al., 1994), is an extremely complicated tectonic zone. It includes seven different tectonic\|sedimentary units from north to south as follows: Gangdese arc complex keeping the Sangri Group inside, the Qiuwu Formation, the Giabulin Formation, the Xigaze Group, ophiolitic massifs, the Liuqu Group, and melange zones (Wang et al., 1999). Current models, which mainly focus on researches at the unit of ophiolitic massifs, propose that most of the Tethyan oceanic lithosphere was subducted into one single subduction zone active during the Middle Cretaceous or the Late Cretaceous, and closed during the Paleogene India\|Asia collision. In this report, we present latest research results on units in the Xigaze forearc basin and others in YZSZ after 6\|year\|period of comprehensive investigations. Chronostratigraphy framework, sedimentology, and evolution of the Xigaze forearc basin are discussed in details. Four thrust systems in YZSZ are named. Dynamic evolution of the YZSZ including two subductions of Tethys is presented.展开更多
Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin...Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin (GGTB) location and evolution during the past 1.8 - 1.6 Myr at least. Depending on whether the remobilization occurred along the interandean depression or the ophiolite suture, the GGTB evolved trough pure or simple shear mechanisms, respectively. Because the GGTB exhibits an along strike tectonic asymmetry associated with a pervasive seismic gap, the simple shear solution is more likely. Tectonic inversion occurred along a mid-crust detachment (the Mid-Crust detachment hereafter) matching the ophiolite suture that accommodates the North Andean Block (NAB) northward drift. The so-called Decoupling Strip located at the shelf slope break accommodated the tensional stress rotation from N-S along the shelf area i.e. NAB-drift induced to E-W along the continental margin i.e. subduction-erosion-induced. The landward dipping Woollard detachment system located at the Upper-Lower slope boundary connects the subduction channel at depth, allowing the Upper slope to evolve independently from the Lower slope wedge. The long-term recurrence interval between earthquakes, the strong interplate coupling, and the aseismic creeping deformation acting along the main low-angle detachments i.e. the Woollard and the Mid-Crust detachments may account for the pervasive seismic gap at the GGTB area. Because the subduction channel exhibits no record of significant seismic activity, no evidence exists to establish a link between the GGTB sustained subsidence and a basin-centered asperity. Because the GGTB is a promising site of hydrocarbon resources, to understand processes at the origin of this escape-induced forearc basin has a major economic interest.展开更多
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
文摘Interpretation of new multichannel seismic reflection data from the Andaman Forearc Basin(AFB) in the northern Indian Ocean is presented here. The highquality multichannel seismic data from the Andaman Forearc region enable us to examine the seismic characters and to demarcate seismic sequences bounded by distinct unconformities. Ages of marked seismic horizons have been calibrated with available litholog data from nearby industry boreholes. Seismic interpretation of new data shows that the AFB is filled with * 4.5-s-two way travel time(TWT) thick Neogene to Recent sediments. The entire basin assemblage exhibits two distinct major sequences pertaining to the Neogene and Quaternary times. A large part of the basin is filled with intermittent mass transport deposits(MTD). We infer that the episodic uplift of the Invisible Bank, protuberance of the outerarc and regular deformation through reactivation of preexisting normal faults since the Pleistocene could be attributed as causal mechanisms for the MTDs. Strong bottom simulating reflectors are identified in the Late Miocene and younger sediments of the outerarc and AFB at a depth of * 0.6 s TWT and correspond to the presence of gas hydrates in this region. Our interpretations have significant implications for geodynamic as well as resource exploration in the AFB.
基金supported by the U.S. National Science Foundation Continental Dynamics Program (EAR-1008527Lead PI, P. Kapp)
文摘The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. This study reports apatite and zircon(U-Th)/He thermochronologic data from fourteen samples from Albian-Ypresian Xigaze forearc strata to determine the degree and timing of heating(burial) and subsequent cooling(exhumation) of two localities along the Yarlung suture zone(YSZ) near the towns of Saga and Lazi. Thirty-seven individual zircon He ages range from 31.5 ± 0.8 Ma to6.06 ± 0.18 Ma,with the majority of grains yielding ages between 30 Ma and 10 Ma. Twenty apatite He ages range from 12.7 ± 0.5 Ma to 3.9 ± 0.3 Ma,with the majority of grains yielding ages between 9 Ma and 4 Ma. These ages suggest that the Xigaze forearc basin was heated to 140-200 ℃ prior to cooling in Oligocene-Miocene time. Thermal modeling supports this interpretation and shows that the samples were buried to maximum temperatures of ~140-200 0 C by 35-21 Ma, immediately followed by the onset of exhumation. The zircon He and apatite He dataset and thermal modeling results indicate rapid exhumation from ~21 Ma to 15 Ma, and at ~4 Ma. The 21-15 Ma thermochronometric signal appears to be regionally extensive, affecting all the lithotectonic units of the YSZ, and coincides with movement along the north-vergent Great Counter Thrust system. Thrusting, coupled with enhanced erosion possibly related to the paleo-Yarlung River, likely drove Early Miocene cooling of the Xigaze forearc basin.In contrast, the younger phase of rapid exhumation at ~4 Ma was likely driven by enhanced rock uplift in the footwall of north-striking rifts that cross-cut the YSZ.
文摘The Yarlung Zangbo Suture Zone (YZSZ), a major lineament in Tibet geological framework, which is accepted as the collision site between India and Asia (Allègre et al., 1984; Coulon et al., 1986; Dewey et al., 1990; Yin et al., 1994), is an extremely complicated tectonic zone. It includes seven different tectonic\|sedimentary units from north to south as follows: Gangdese arc complex keeping the Sangri Group inside, the Qiuwu Formation, the Giabulin Formation, the Xigaze Group, ophiolitic massifs, the Liuqu Group, and melange zones (Wang et al., 1999). Current models, which mainly focus on researches at the unit of ophiolitic massifs, propose that most of the Tethyan oceanic lithosphere was subducted into one single subduction zone active during the Middle Cretaceous or the Late Cretaceous, and closed during the Paleogene India\|Asia collision. In this report, we present latest research results on units in the Xigaze forearc basin and others in YZSZ after 6\|year\|period of comprehensive investigations. Chronostratigraphy framework, sedimentology, and evolution of the Xigaze forearc basin are discussed in details. Four thrust systems in YZSZ are named. Dynamic evolution of the YZSZ including two subductions of Tethys is presented.
文摘Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin (GGTB) location and evolution during the past 1.8 - 1.6 Myr at least. Depending on whether the remobilization occurred along the interandean depression or the ophiolite suture, the GGTB evolved trough pure or simple shear mechanisms, respectively. Because the GGTB exhibits an along strike tectonic asymmetry associated with a pervasive seismic gap, the simple shear solution is more likely. Tectonic inversion occurred along a mid-crust detachment (the Mid-Crust detachment hereafter) matching the ophiolite suture that accommodates the North Andean Block (NAB) northward drift. The so-called Decoupling Strip located at the shelf slope break accommodated the tensional stress rotation from N-S along the shelf area i.e. NAB-drift induced to E-W along the continental margin i.e. subduction-erosion-induced. The landward dipping Woollard detachment system located at the Upper-Lower slope boundary connects the subduction channel at depth, allowing the Upper slope to evolve independently from the Lower slope wedge. The long-term recurrence interval between earthquakes, the strong interplate coupling, and the aseismic creeping deformation acting along the main low-angle detachments i.e. the Woollard and the Mid-Crust detachments may account for the pervasive seismic gap at the GGTB area. Because the subduction channel exhibits no record of significant seismic activity, no evidence exists to establish a link between the GGTB sustained subsidence and a basin-centered asperity. Because the GGTB is a promising site of hydrocarbon resources, to understand processes at the origin of this escape-induced forearc basin has a major economic interest.