In this paper, we first consider the position restriction scheduling problems on a single machine. The problems have been solved in certain special cases, especially for those obtained by restricting the processing ti...In this paper, we first consider the position restriction scheduling problems on a single machine. The problems have been solved in certain special cases, especially for those obtained by restricting the processing time pj = 1. We introduce the bipartite matching algorithm to provide some polynomial-time algorithms to solve them. Then we further consider a problem on unrelated processors.展开更多
作战任务和平台资源的合理匹配是战役作战准备阶段的主要内容。考虑平台资源能力在作战过程中的损耗,在问题建模的过程中引入了资源能力的损耗系数,使得所建模型更加符合实际作战。提出了基于动态列表调度(dynamic list scheduling,DLS...作战任务和平台资源的合理匹配是战役作战准备阶段的主要内容。考虑平台资源能力在作战过程中的损耗,在问题建模的过程中引入了资源能力的损耗系数,使得所建模型更加符合实际作战。提出了基于动态列表调度(dynamic list scheduling,DLS)和遗传算法(genetic algorithm,GA)的模型求解方法,使用DLS选择处理的任务,使用GA为选定任务分配平台资源,给出了该方法具体的设计思路和流程。最后结合联合作战的战役算例,验证了所提方法的优越性和适用性。展开更多
文摘In this paper, we first consider the position restriction scheduling problems on a single machine. The problems have been solved in certain special cases, especially for those obtained by restricting the processing time pj = 1. We introduce the bipartite matching algorithm to provide some polynomial-time algorithms to solve them. Then we further consider a problem on unrelated processors.
文摘作战任务和平台资源的合理匹配是战役作战准备阶段的主要内容。考虑平台资源能力在作战过程中的损耗,在问题建模的过程中引入了资源能力的损耗系数,使得所建模型更加符合实际作战。提出了基于动态列表调度(dynamic list scheduling,DLS)和遗传算法(genetic algorithm,GA)的模型求解方法,使用DLS选择处理的任务,使用GA为选定任务分配平台资源,给出了该方法具体的设计思路和流程。最后结合联合作战的战役算例,验证了所提方法的优越性和适用性。