期刊文献+
共找到6,212篇文章
< 1 2 250 >
每页显示 20 50 100
Response of Decadal Droughts on the Mongolian Plateau to External Forcings and Internal Variability over the Last Millennium
1
作者 Guangyao HAO Weiyi SUN +2 位作者 Jian LIU Liang NING Mi YAN 《Advances in Atmospheric Sciences》 2025年第8期1715-1726,共12页
Since the mid-20th century,the Mongolian Plateau(MP)has experienced decadal droughts coupled with extreme heatwaves,severely affecting regional ecology and social development.However,the mechanisms behind these decada... Since the mid-20th century,the Mongolian Plateau(MP)has experienced decadal droughts coupled with extreme heatwaves,severely affecting regional ecology and social development.However,the mechanisms behind these decadalscale compound heatwavedrought events remain debated.Here,using reconstructions and simulations from the Community Earth System Model Last Millennium Ensemble,we demonstrate that,over the last millennium,decadal droughts on the MP occurred under both warm and cold conditions,differing from recent compound heatwavedrought events.We found that by examining temperature changes during these drought periods,the distinct influences of external forcings and internal variability can be simply and effectively distinguished.Specifically,colddry events were primarily driven by volcanic eruptions that weakened the East Asian summer monsoon and midlatitude westerlies,reducing moisture transport to the MP.In contrast,warmdry events were predominantly induced by internal variability,notably the negative phase of the Atlantic Multidecadal Oscillation and the expansion of the Barents Sea ice extent.The recent extreme compound event was probably influenced by the combined effects of anthropogenic forcings and internal variability.These findings deepen our understanding of how external forcings and internal variability affect decadal drought events on the MP and highlight that recent compound events are unprecedented in the context of the last millennium. 展开更多
关键词 decadal drought Mongolian Plateau temperature anomalies external forcings internal variability
在线阅读 下载PDF
Subsurface Airflow Induced by Natural Forcings 被引量:1
2
作者 JiuJ.Jiao LIHai-long 《地球科学进展》 CAS CSCD 2004年第3期415-421,共7页
Subsurface air flow can be induced by natural processes, such as atmospheric or barometric pressure changes, water table fluctuations, topographic effects, and rainfall infiltration. Barometric pressure fluctuations a... Subsurface air flow can be induced by natural processes, such as atmospheric or barometric pressure changes, water table fluctuations, topographic effects, and rainfall infiltration. Barometric pressure fluctuations are the most common cause of subsurface air flow, which can be significant under favourable geological conditions. This process has been studied most extensively because of its application to passive soil vapor extraction. Soil air flow induced by water table fluctuations can be significant, particularly where the fluctuations are of high frequency, for example, in tidal-influenced coastal areas. Topographic effects can lead to strong subsoil air flow in areas with great elevation differences. Rainfall infiltration usually produces only weak airflow. Air flow induced by these natural processes has important environmental and engineering implications. Among the different processes, air flow induced by tidal fluctuations has been studied the least, although it has exciting applications to coastal engineering projects and environmental remediation. 展开更多
关键词 AIRFLOW UNSATURATED ZONE NATURAL forcings
在线阅读 下载PDF
Water Vapor and Cloud Radiative Forcings over the Pacific Ocean Simulated by the LASG/IAP AGCM:Sensitivity to Convection Schemes 被引量:8
3
作者 吴春强 周天军 +1 位作者 孙德征 包庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期80-98,共19页
Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model deve... Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed. 展开更多
关键词 SAMIL convection scheme cloud radiative forcing greenhouse effect
在线阅读 下载PDF
Efficient Anomalous Forcings for Linear Problems
4
作者 李志锦 纪立人 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期436-446,共11页
For linear forcing problems, a method is developed to provide a set of forcing modes which form a complete orthonormal basis for the finite-time response to steady forcing in the energy inner product space. The forcin... For linear forcing problems, a method is developed to provide a set of forcing modes which form a complete orthonormal basis for the finite-time response to steady forcing in the energy inner product space. The forcing modes are found by calculating eigenvectors of a positive definite and symmetric matrix determined from given equations of motion. The amplitude of responses to forcing modes is given in terms of the associated eigenvalues. This method is used in a nondivergent barotropic model linearized about the 300 hPa zonally-varying climatological flow both for northern summertime and wintertime. The results show that the amplitude of response varies considerably with different forcing modes. Only a few of forcing modes associated with the leading eigenvalues, called efficient forcing mode, can excite significant response. The efficient forcing modes possess highly localized spatial structure with wavetrain appearance. Most of the efficient forcings are located to the south of regions of the jet cores. The forcings located over polar regions are also efficient. In addition, the response is larger in wintertime than in summertime for a given forcing. 展开更多
关键词 Generalized eigenvalue and eigenvector Strength factor of response Efficient forcing
在线阅读 下载PDF
Shortwave Cloud and Aerosol Radiative Forcings and Their Effects on the Vertical Local Heating/Cooling Rates
5
作者 L. Akana Nguimdo D. Njomo 《Atmospheric and Climate Sciences》 2013年第3期337-347,共11页
An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears tha... An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day. 展开更多
关键词 Planetary Boundary LAYER Upper LAYER Clear Sky FLUX ALL-SKY FLUX Net DOWNWARD FLUX Radiative FORCING Heating/Cooling Rates
在线阅读 下载PDF
Complex bursting patterns in Van der Pol system with two slowly changing external forcings 被引量:2
6
作者 HAN XiuJing BI QinSheng 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第3期702-708,共7页
This paper investigates the generation of complex bursting patterns in Van der Pol system with two slowly changing external forcings. Complex bursting patterns, including complex periodic bursting and chaotic bursting... This paper investigates the generation of complex bursting patterns in Van der Pol system with two slowly changing external forcings. Complex bursting patterns, including complex periodic bursting and chaotic bursting, are presented for the cases when the two frequencies are commensurate and incommensurate. These complex bursting patterns are novel and have not been reported in previous work. Based on the fast-slow dynamics, the evolution processes of the slow forcing are presented to reveal the dynamical mechanisms undedying the appearance of these complex bursting patterns. With the change of ampli- tudes and frequencies, the slow forcing may visit the spiking and rest areas in different ways, which leads to the generation of different complex bursting patterns. 展开更多
关键词 Van der Pol system two external forcings complex periodic bursting patterns chaotic bursting
原文传递
Contributions of anthropogenic and external natural forcings to climate changes over China based on CMIP5 model simulations 被引量:6
7
作者 ZHAO Tian Bao LI Chun Xiang ZUO Zhi Yan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期503-517,共15页
Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic ... Based on observations and historical simulations from the fifth phase of the Coupled Model Intercomparison Project(CMIP5) archive, the contributions of human activities(including greenhouse gases(GHGs), anthropogenic aerosols(AAs), and land use(LU)) and external natural forcings(Nat) to climate changes in China over the past 50 years were quantified. Both anthropogenic and external natural forcings account for 95%–99% of the observed temperature change from 1951–1975 to 1981–2005. In particular, the temperature changes induced by GHGs are approximately 2–3 times stronger than the observed changes, and AAs impose a significant cooling effect. The total external forcings can explain 65%–78% of the observed precipitation changes over the past 50 years, in which AAs and GHGs are the primary external forcings leading to the precipitation changes; in particular, AAs dominate the main spatial features of precipitation changes in eastern China. Human activities also dominate the long-term non-linear trends in observed temperature during the past several decades, and, in particular, GHGs, the primary warming contributor, have produced significant warming since the 1960 s. Compared to the long-term non-linear trends in observed precipitation, GHGs have largely caused the wetting changes in the arid-semiarid region since the 1970 s, whereas AAs have led to the drying changes in the humid-semihumid region; both LU and Nat can impose certain impacts on the long-term non-linear trends in precipitation. Using the optimal fingerprinting detection approach, the effects of human activities on the temperature changes can be detected and attributed in China, and the effect of GHGs can be clearly detected from the observations in humid-semihumid areas. However, the anthropogenic effects cannot be detected in the observed precipitation changes, which may be due to the uncertainties in the model simulations and to other issues. Although some results in this paper still need improvement due to uncertainties in the coupled models, this study is expected to provide the background and scientific basis for climate changes to conduct vulnerability and risk assessments of the ecological systems and water resources in the arid-semiarid region of China. 展开更多
关键词 Human activity External natural forcings CMIP5 models Contributions Climate changes China
原文传递
Geometric size and forming force prediction in incremental flanging:A new analytical model 被引量:1
8
作者 Chong TIAN Dawei ZHANG +1 位作者 Guangcan YANG Shengdun ZHAO 《Chinese Journal of Aeronautics》 2025年第2期519-540,共22页
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca... A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained. 展开更多
关键词 Incremental flanging Analytical model Strain characteristic Geometric size Forming force
原文传递
Safety assessment of overcharged batteries and a novel passive warning method based on relaxation expansion force 被引量:1
9
作者 Long Chen Shaohong Zeng +4 位作者 Jiahua Li Kuijie Li Ruixin Ma Jizhen Liu Weixiong Wu 《Journal of Energy Chemistry》 2025年第6期595-607,I0013,共14页
Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the de... Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries. 展开更多
关键词 Lithium-ion battery Slight overcharging Thermal runaway Overcharging warning Safety assessment Relaxation expansion force
在线阅读 下载PDF
The Collaborative Development of Sensors and Artificial Intelligence 被引量:1
10
作者 Shangchun Fan Feiyang Zhang Yufu Qu 《Instrumentation》 2025年第1期1-10,共10页
Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national ec... Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national economy and the people's livelihood,such as national defense security and the development of new quality productive forces.This paper provides a comprehensive survey of how sensors should adapt to the current upsurge of artificial intelligence,analyzing their technical connotations,application characteristics,and inherent limitations.Furthermore,with a sensor-oriented mindset,it is proposed that sensors will dominate information technology,upgrade connotations,advance ubiquitous bionic intelligence and engage in a"symbiotic dance"with artificial intelligence.This overview provides a promising direction for the higher-level development of sensors and artificial intelligence. 展开更多
关键词 SENSOR artificial intelligence information technology new quality productive forces collaborative development
原文传递
Pore-scale investigation of forced imbibition in porous rocks through interface curvature and pore topology analysis 被引量:1
11
作者 Jianchao Cai Xiangjie Qin +2 位作者 Han Wang Yuxuan Xia Shuangmei Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期245-257,共13页
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa... Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping. 展开更多
关键词 Forced imbibition Porous rocks Interface dynamics Pore topology Residual fluid distribution
在线阅读 下载PDF
Force and impulse multi-sensor based on flexible gate dielectric field effect transistor
12
作者 Chao Tan Junling Lü +3 位作者 Chunchi Zhang Dong Liang Lei Yang Zegao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期214-220,共7页
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ... Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months. 展开更多
关键词 flexible gate dielectric transistor force sensor impulse sensor force sensor array
在线阅读 下载PDF
Magnetically-actuated intracorporeal biopsy robot based on Kresling Origami 被引量:1
13
作者 Long Huang Tingcong Xie Lairong Yin 《Theoretical & Applied Mechanics Letters》 2025年第1期49-56,共8页
The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated int... The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated into robotic capsule endoscopy to augment diagnostic capabilities.In this study,we propose a magnetically driven biopsy robot based on a Kresling origami.Considering the bistable properties of Krelsing origami and the elasticity of the creases,a foldable structure of the robot with constant force characteristics is designed.The folding motion of the structure is used to deploy the needle into the target tissue.The robot is capable of performing rolling motion under the control of an external magnetic drive system,and a fine needle biopsy technique is used to collect deep tissue samples.We also conduct in vitro rolling experiments and sampling experiments on apple tissues and pork tissues,which verify the performance of the robot. 展开更多
关键词 Kresling origami Fine needle biopsy Magnetic actuation Constant force characteristics
在线阅读 下载PDF
Force CT引导下双针脉冲射频治疗原发性舌咽神经痛的临床疗效
14
作者 黄贾敏 曹宏 《医学综述》 2025年第7期877-880,892,共5页
目的探讨Force CT引导下双针脉冲射频治疗原发性舌咽神经痛的临床疗效。方法选择2017年1月至2023年7月于包头市中心医院疼痛科住院行脉冲射频术的60例原发性舌咽神经痛患者为研究对象,依据抛硬币法随机分为对照组和观察组,各30例。对照... 目的探讨Force CT引导下双针脉冲射频治疗原发性舌咽神经痛的临床疗效。方法选择2017年1月至2023年7月于包头市中心医院疼痛科住院行脉冲射频术的60例原发性舌咽神经痛患者为研究对象,依据抛硬币法随机分为对照组和观察组,各30例。对照组行普通CT引导下双针脉冲射频治疗,观察组行Force CT引导下双针脉冲射频治疗。观察记录两组患者CT扫描次数、治疗操作时间,术前、术后1周、术后1年巴罗神经研究所疼痛强度评分(BNI-P)分级,以及手术相关并发症发生情况。结果观察组CT扫描次数少于对照组[3(3,4)次比7(6,8)次],治疗操作时间短于对照组[30(30,40)min比65(50,70)min](P<0.01)。治疗后1周,观察组患者BNI-P分级低于对照组[2(1,2)级比2(2,4)级](P<0.05)。与治疗前相比,两组患者治疗后1周、治疗后1年BNI-P分级均降低(P<0.01);观察组疗效良好率高于对照组[83.3%(25/30)比60.0%(18/30)](χ^(2)=4.022,P=0.045)。两组患者并发症发生率比较差异无统计学意义(P>0.05)。结论Force CT引导下行脉冲射频术的原发性舌咽神经痛患者CT扫描次数、手术时间均少于普通CT引导患者,且疗效良好率优于普通CT引导,均无严重并发症。 展开更多
关键词 舌咽神经痛 脉冲射频 Force CT
暂未订购
Evolution of undeformed chip thickness and grinding forces in grinding of K4002 nickel-based superalloy using corundum abrasive wheels 被引量:1
15
作者 Yang CAO Biao ZHAO +6 位作者 Wenfeng DING Xiaofeng JIA Bangfu WU Fei LIU Yanfang ZHU Qi LIU Dongdong XU 《Chinese Journal of Aeronautics》 2025年第1期131-146,共16页
The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusio... The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy. 展开更多
关键词 K4002 nickel-based superalloy Grinding force Material removal mechanism Undeformed chip thickness Quantity of active abrasive grains
原文传递
Mechanical properties and enhanced soil shear strength of herbaceous plant roots in the alpine meadow layer of the permafrost region on the Qinghai-Xizang Plateau,China 被引量:1
16
作者 HE Dequan LU Haijing +5 位作者 HU Xiasong WANG Cheng LIU Changyi ZHAO Yingxiao LI Shuaifei DENG Taiguo 《Journal of Arid Land》 2025年第4期515-537,共23页
The Qinghai-Xizang Plateau of China faces challenges like thaw slumping,threatening slope stability and infrastructure.Understanding the mechanical properties of the roots of the dominant herbaceous plant species in t... The Qinghai-Xizang Plateau of China faces challenges like thaw slumping,threatening slope stability and infrastructure.Understanding the mechanical properties of the roots of the dominant herbaceous plant species in the alpine meadow layer of the permafrost regions on the Qinghai-Xizang Plateau is essential for evaluating their role in enhancing soil shear strength and mitigating slope deformation in these fragile environments.In this study,the roots of four dominant herbaceous plant species—Kobresia pygmaea,Kobresia humilis,Carex moorcroftii,and Leontopodium pusillum—that are widely distributed in the permafrost regions of the Qinghai-Xizang Plateau were explored to determine their mechanical properties and effects in enhancing soil shear strength.Through indoor single root tensile and root group tensile tests,we determined the root diameter,tensile force,tensile strength,tensile ratio,and strength frequency distributions.We also evaluated their contributions to inhibiting slope deformation and failure during the formation and development of thermal thaw slumps in the alpine meadow.The results showed that the distribution of the root diameter of the dominant plant species is mostly normal,while the tensile strength tends to be logarithmically normally distributed.The relationship between the root diameter and root tensile strength conforms to a power function.The theoretical tensile strength of the root group was calculated using the Wu-Waldron Model(WWM)and the Fiber Bundle Model(FBM)under the assumption that the cumulative single tensile strength of the root bundle is identical to the tensile strength of the root group in the WWM.The FBM considers three fracture modes:FBM-D(the tensile force on each single root is proportional to its diameter relative to the total sum of all the root diameters),FBM-S(the cross-sectional stress in the root bundle is uniform),and FBM-N(each tensile strength test of individual roots experiences an equal load).It was found that the model-calculated tensile strength of the root group was 162.60%higher than the test value.The model-derived tensile force of the root group from the FBM-D,FBM-S,and FBM-N was 73.10%,28.91%,and 13.47%higher than the test values,respectively.The additional cohesion of the soil provided by the roots was calculated to be 25.90-45.06 kPa using the modified WWM,67.05-38.15 kPa using the FBM-S,and 57.24-32.74 kPa using the FBM-N.These results not only provide a theoretical basis for further quantitative evaluation of the mechanical effects of the root systems of herbaceous plant species in reinforcing the surface soil but also have practical significance for the effective prevention and control of thermal thaw slumping disasters in the permafrost regions containing native alpine meadows on the Qinghai-Xizang Plateau using flexible plant protection measures. 展开更多
关键词 thaw slumping soil shear strength root-soil composites root tensile force Wu-Waldron Model(WWM) Fiber Bundle Model(FBM) Qinghai-Xizang Plateau
在线阅读 下载PDF
A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach
17
作者 Linlin Sun Zihui Wang +3 位作者 Shukun Cui Ziquan Yan Weiping Hu Qingchun Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期555-577,共23页
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ... Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time. 展开更多
关键词 Rail weld irregularity high-speed railway vehicle-track coupled dynamics wheel/rail dynamic vertical force artificial neural networks
在线阅读 下载PDF
Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing
18
作者 Haolan Ren Fei Zheng +1 位作者 Tingwei Cao Qiang Wang 《Atmospheric and Oceanic Science Letters》 2025年第1期39-45,共7页
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c... Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale. 展开更多
关键词 Recovery of AMOC 4×CO_(2) forcing Key parameter Parameter estimation Data assimilation Machine learning
在线阅读 下载PDF
Monitoring and Data Analysis of Mooring Tension for Floating Platforms
19
作者 YANG Hua−wei ZHENG Qing−xin +2 位作者 XU Chun YANG Qi−fan JIANG Zhen−tao 《船舶力学》 北大核心 2025年第6期941-951,共11页
Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data... Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest. 展开更多
关键词 floating platform mooring tension tension monitoring sensor wave frequency force drift force
在线阅读 下载PDF
Fatigue Crack Growth Behavior of High-strength Steel for Ships
20
作者 LEI Yin−hui WANG Ke +3 位作者 ZHANG Ruo−nan LI Yong−zheng QIN Chuang WEI Peng−yu 《船舶力学》 北大核心 2025年第6期952-963,共12页
As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by exp... As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by experimental methods.First,the fatigue threshold test and fatigue crack growth rate test of this high-strength steel under different stress ratios were carried out.The influence of stress ratio on the fatigue properties of this steel was analyzed.Secondly,scanning electron microscope was used to analyze the crack growth specimen section of this steel.The crack growth and failure mechanism of this steel were revealed.Finally,based on the above research results,the stress ratio effect of high-strength steel was investigated from the perspectives of crack closure and driving force.Considering the fatigue behavior in the near-threshold stage and the destabilization stage,a fatigue crack growth behavior prediction model of highstrength steel was established.The accuracy of the model was verified by test data.Moreover,the applicability of the modified model to various materials and its excellent predictive ability were verified through comparison with literature data and existing models. 展开更多
关键词 high-strength steel fatigue test load ratio effect dual-parameter-driving force prediction model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部