In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogen bacteria in food was the...In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogen bacteria in food was the most hopeful system in these methods about bio-control. Controls of bacteriophage for each pathogen species and subspecies and determination of phage-host originality are important because efficient bio-control was achieved. Researches concentrated on some food-borne pathogen bacteria such as E. coli O157:H7, Campylobacter, Salmonella and Listeria. In a consequence of these studies made as in vitro and in vivo, first commercial production of phage which will be used in foods was made in Netherlands. Also, it has been informed that use of phage is cost-efficient alternative as compared with other preservatives. This review, discussed application of bacteriophages as bio-control agents in food and advantages and disadvantages about uses of bacteriophages by taking into account antimicrobial characteristics of them.展开更多
Due to the increasing number of food-borne diseases,more attention is being paid to food safety.Food-borne pathogens are the main cause of food-borne diseases,which seriously endanger human health,so it is necessary t...Due to the increasing number of food-borne diseases,more attention is being paid to food safety.Food-borne pathogens are the main cause of food-borne diseases,which seriously endanger human health,so it is necessary to detect and control them.Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings,such as being time-consuming,laborious or requiring expensive instrumentation.Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties.New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity.In this review,we summarize the different characteristics of quantum dots synthesized by carbon,heavy metals and composite materials firstly.Then,attention is paid to the principles,advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens.Finally,the great potential of quantum dots in pathogen detection is summarized.展开更多
Food-borne pathogens are an important challenge for the food industry.In this study,the possibility of using the previously designed and synthesized antimicrobial peptide HX-12C as a new food antimicrobial was evaluat...Food-borne pathogens are an important challenge for the food industry.In this study,the possibility of using the previously designed and synthesized antimicrobial peptide HX-12C as a new food antimicrobial was evaluated.Bacteriostatic and bactericidal tests showed that HX-12C has strong,rapid and broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria.Outer-and inner-membrane permeabilization assays revealed that HX-12C killed food-borne pathogens by inducing membrane permeability.Further Scanning Electron Microscope(SEM)and Transmission Electron Microscope(TEM)also showed that HX-12C can distinctively act on the bacterial membrane leading to the leakage of cellular contents.Moreover,HX-12C also showed anti-biofilm ability in bacterial killing tests.In the food storage test,HX-12C exhibited significant antimicrobial function in raw pork and orange juice.Therefore,HX-12C has shown great potential as a new antimicrobial agent in food storage.展开更多
Antimicrobial effects of carnosic acid,kaempferol and luteolin on biogenic amine(BA)production by five spoilage(Photobacterium damselae,Proteus mirabilis,Enterobacter cloacea,Pseudomonas luteola and Serratia liquefaci...Antimicrobial effects of carnosic acid,kaempferol and luteolin on biogenic amine(BA)production by five spoilage(Photobacterium damselae,Proteus mirabilis,Enterobacter cloacea,Pseudomonas luteola and Serratia liquefaciens)and five food-borne pathogenic bacteria(Staphylococcus aureus ATCC29213,Enterococcus faecalis ATCC29212,Escherichia coli ATCC25922,Salmonella Paratyphi A NCTC13 and Yersinia enterocolitica NCTC 11175)were investigated.The formation of ammonia(AMN),trimethylamine(TMA)and BAs by all bacterial strains were observed using ornithine decarboxylase broth.BAs,AMN,and TMA were determined by using high performance liquid chromatography(HPLC)method.The results showed that significant differences were observed(P≤0.05)in formation among spoilage and also food-borne bacteria.The impact of phenolic compounds on AMN,TMA and BAs production was dependent on bacterial strains.When total amount of cadaverine(CAD),putrescine(PUT),histamine(HIS)and tyramine(TYR)was considered,the phenolic compounds presented antimicrobial activity against fish spoliage bacteria and food-borne pathogens following the order;kaempferol>carnosic acid>luteolin.These phenolics have potential to be used as food preservatives.展开更多
Food-producing animals are the major reservoirs for many foodborne pathogens such as Campylobacter species, non-Typhi serotypes of Salmonella enterica, Shiga toxin-producing strains of Escherichia coli, and Listeria m...Food-producing animals are the major reservoirs for many foodborne pathogens such as Campylobacter species, non-Typhi serotypes of Salmonella enterica, Shiga toxin-producing strains of Escherichia coli, and Listeria monocytogenes. The zoonotic potential of foodborne pathogens and their ability to produce toxins causing diseases or even death are sufficient to recognize the seriousness of the situation. This manuscript reviews the evidence that links animals as vehicles of the foodborne pathogens Salmonella,Campylobacter, Shiga toxigenic E. coli, and L. monocytogenes, their impact, and their current status. We conclude that these pathogenic bacteria will continue causing outbreaks and deaths throughout the world, because no effective interventions have eliminated them from animals and food.展开更多
Cadmium accumulation in seafood has become a major concern for human health.Recently,there has been an increasing focus on the potential risks associated with food-borne fluorescent carbon dots(CDs)that are formed dur...Cadmium accumulation in seafood has become a major concern for human health.Recently,there has been an increasing focus on the potential risks associated with food-borne fluorescent carbon dots(CDs)that are formed during the thermal processing of seafood.The co-occurrence of cadmium and CDs from cooked seafood become a common phenomenon and co-exposure of them to human has been an inevitable route during long-term seafood consuming.In addition,it has been widely recognized that CDs can be used as nanocarriers for metal ion chelation for their transport into organisms,thereby,they could influence the bioavailability of metal ion.While there have been numerous studies on the toxic effects of cadmium or CDs,none have explored the combined toxicity of food-borne CDs from clams(CCDs)and Cd^(2+).In this study,we investigated the single or co-exposure(combined exposure)of Cd^(2+)and CCDs on PC12 cells to investigate the combined toxicity of them.Our analysis of cell viability revealed that CCDs significantly augmented the cytotoxicity induced by Cd^(2+).More in-depth metabolomics and lipidomics investigation indicated that the combined exposure of Cd^(2+)and CCDs led to significant metabolic disorders,causing an antagonistic effect on energy metabolism,and a synergistic effect on amino acids and lipids metabolism.The disturbance in metabolomics and lipidomics was further supported by the disruption of mitochondrial membrane potential and the accumulation of reactive oxygen species following co-exposure.These findings provide new evidence that support the enhanced cytotoxicity of Cd^(2+)by the CCDs derived from the thermal processing of clams.This study also declares the necessary that prioritize the investigation of the potential impact of other thermal processing hazards originating from heat-processed foods on the toxicity of heavy metal ions.展开更多
Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as s...Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as single embryo and easy rooting.However,Citron C-05 was found to be highly susceptible to root rot during cultivation,with the specific pathogens previously unknown.In this study,four candidate fungal species were isolated from Citron C-05 roots.Sequence analysis of ITS,EF-1a,RPB1,and RPB2 identified two Fusarium solani strains,Rr-2 and Rr-4,as the candidates causing root rot in Citron C-05.Resistance tests showed these two pathogens increased root damage rate from 10.30%to 35.69%in Citron C-05,sour orange(Citrus aurantium),sweet orange(Citrus sinensis)and pummelo(Citrus grandis).F.solani exhibited the weak pathogenicity towards trifoliate orange(Poncirus trifoliata).DAB staining revealed none of reddish-brown precipitation in the four susceptible citrus germplasm after infection with F.solani,while trifoliate orange exhibited significant H2O2 accumulation.Trypan blue staining indicated increased cell death in the four susceptible citrus germplasm following infection with these two pathogens but not in trifoliate orange.These findings provide a comprehensive understanding of citrus root rot and support future research on the mechanisms of root rot resistance in citrus.展开更多
Trichinosis is among the most common food-borne parasitic zoonoses in Thailand and many outbreaks are reported each year. This paper investigates the distribution of the disease in regions of north, north-east, centra...Trichinosis is among the most common food-borne parasitic zoonoses in Thailand and many outbreaks are reported each year. This paper investigates the distribution of the disease in regions of north, north-east, central and south Thailand. Between the earliest recorded of outbreak of trichinosis in Mae Hong Son Province in 1962 and 2006, there have been 135 outbreaks involving 7340 patients and 97 deaths in Thailand. The highest number of cases, 557, was recorded in 1983. Most infected patients were in the 35-44 year age group, and the disease occurred more frequently in men than women during 1962-2003, with no significant sex difference during 2004-2006. Outbreaks were most common in the northern areas, especially in rural areas where raw and under-cooked pork and/or wild animals are eaten. Human infections occur annually in northern Thailand during communal feasts celebrating the Thai New Year. Trichinosis causes have been reported every year, supporting the need for planning education programs.展开更多
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn...Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.展开更多
The Salmonella pathogenicity islands(SPIs) play crucial roles in the progression of Salmonella infection. In this study, we constructed an improved λ Red homologous recombination system to prepare single and triple d...The Salmonella pathogenicity islands(SPIs) play crucial roles in the progression of Salmonella infection. In this study, we constructed an improved λ Red homologous recombination system to prepare single and triple deletion mutants of 3 prominent SPIs(SPI-1, 2, and 3), aiming at the impact of deletion on morphology, carbon source metabolism, adhesion and invasion capacity, in vivo colonization, and immune efficacy in chicks. Our examination revealed that the surface of the single deletion mutants(SM6ΔSPI1, ΔSPI2, and ΔSPI3) exhibited a more rugged texture and appeared to be enveloped in a layer of transparent colloid, whereas the morphology of the triple deletion mutant(SM6ΔSPI1&2&3) remained unaltered when compared to the parent strain. The carbon metabolic spectrum of the SPI mutants underwent profound alterations, with a notable and statistically significant modification observed in 30 out of 95 carbon sources, primarily carbohydrates(17 out of 30). Furthermore, the adhesion capacity of the 4 mutants to Caco-2 cells was significantly reduced when compared to that of the parent strain. Moreover,the invasion capacity of mutants SM6ΔSPI1 and SM6ΔSPI1&2&3 exhibited a substantial decrease, while it was enhanced to varying degrees for SM6ΔSPI3 and SM6ΔSPI2. Importantly, none of the 4 mutants induced any clinical symptoms in the chicks. However, they did transiently colonize the spleen and liver. Notably, the SM6ΔSPI1&2&3mutant was rapidly cleared from both the spleen and liver within 8 days post-infection and no notable pathological changes were observed in the organs. Additionally, when challenged, the mutants immunized groups displayed a significant increase in antibody levels and alterations in the CD3+CD4+ and CD3+CD8+ subpopulations, and the levels of IL-4 and IFN-γ cytokines in the SM6ΔSPI1&2&3 immunized chicken serum surpassed those of other groups.In summary, the successful construction of the 4 SPI mutants lays the groundwork for further exploration into the pathogenic(including metabolic) mechanisms of SPIs and the development of safe and effective live attenuated Salmonella vaccines or carriers.展开更多
Coffee wilt represents one of the most devastating diseases of Arabica coffee(Coffea arabica L.)plantations in the primary coffee-producing regions.In this study,coffee trees manifesting wilt symptoms accompanied by t...Coffee wilt represents one of the most devastating diseases of Arabica coffee(Coffea arabica L.)plantations in the primary coffee-producing regions.In this study,coffee trees manifesting wilt symptoms accompanied by the defoliation and drying of the whole tree were observed in the Jazan,El Baha,Najran,and Asir regions.The purpose of this investigation was to isolate and identify the Fusarium species recovered from symptomatic coffee trees.The developed fungi were initially characterized based on their morphological features followed by molecular phylogenetic multi-locus analysis of the combined sequences of ITS,TEF1-α,RPB2,and CaM.Twenty-five isolates were recovered from 28 samples.All fungal isolates were categorized morphologically under the genus Fusarium.Phylogenetic analysis positioned all the representative 15 isolates into one cluster grouping together with Neocosmospora falciformis(formerly F.falciforme)confirming their taxonomic position.Pathogenicity tests of the N.falciformis isolates were subsequently conducted on coffee seedlings,and the results revealed that all isolates induced wilt symptoms resembling those recorded in the field,and the incidence was 100%.The fungicide sensitivity test of seven investigated fungicides revealed that Maxim XL^(®) followed by Moncut^(®) exhibited the highest inhibitory effect against N.falciformis KSA 24-14,reaching 93.33%and 91.67%,respectively.To our knowledge,N.falciformis is a new causal pathogen of coffee wilt in Saudi Arabia.Remarkably,these results offer important insights for devising effective approaches to monitor and control such diseases.展开更多
Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune press...Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune pressure and host factors.Understanding these changes is crucial for epidemic control and variant research.Methods:Human angiotensin-converting enzyme 2(hACE2)transgenic mice were in-tranasally challenged with the original strain WH-09 and the variants Delta,Beta,and Omicron BA.1,while BALB/c mice were challenged with Omicron subvariants BA.5,BF.7,and XBB.1.To compare the pathogenicity differences among variants,we con-ducted a comprehensive analysis that included clinical symptom observation,meas-urement of viral loads in the trachea and lungs,evaluation of pulmonary pathology,analysis of immune cell infiltration,and quantification of cytokine levels.Results:In hACE2 mice,the Beta variant caused significant weight loss,severe lung inflammation,increased inflammatory and chemotactic factor secretion,greater mac-rophage and neutrophil infiltration in the lungs,and higher viral loads with prolonged shedding duration.In contrast,BA.1 showed a significant reduction in pathogenicity.The BA.5,BF.7,and XBB.1 variants were less pathogenic than the WH-09,Beta,and Delta variants when infected in BALB/c mice.This was evidenced by reduced weight loss,diminished pulmonary pathology,decreased secretion of inflammatory factors and chemokines,reduced macrophage and neutrophil infiltration,as well as lower viral loads in both the trachea and lungs.Conclusion:In hACE2 mice,the Omicron variant demonstrated the lowest pathogenic-ity,while the Beta variant exhibited the highest.Pathogenicity of the Delta variant was comparable to the original WH-09 strain.Among BALB/c mice,Omicron subvari-ants BA.5,BF.7,and XBB.1 showed no statistically significant differences in virulence.展开更多
Electrochemiluminescence(ECL)technology has emerged as a pivotal tool in the field of pathogen detection due to its high sensitivity,strong specificity,operational convenience,and adaptability to complex biological sa...Electrochemiluminescence(ECL)technology has emerged as a pivotal tool in the field of pathogen detection due to its high sensitivity,strong specificity,operational convenience,and adaptability to complex biological samples.This paper systematically elucidates the fundamental mechanisms and classification characteristics of ECL technology,with a particular focus on its applications in detecting nucleic acids,proteins,metabolites,and drug-resistant mutants of pathogenic microorganisms.Through comparative analysis with traditional detection methods,the technological advantages and suitable scenarios of ECL are highlighted.Furthermore,this paper delves into the existing challenges of ECL technology in clinical applications,providing a theoretical basis for advancing its translational use in pathogen diagnostics.展开更多
Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Mole...Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.HCM has a relatively wide phenotypic heterogeneity,varying from asymptomatic to sudden cardiac death,because of the many different mutations and pathogenic genes underlying it.Many studies have explored the clinical symptoms and prognosis of HCM,emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM.To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease.Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients.As sequencing technology advances,the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer.HCM is a widespread inherited disease with a highly variable clinical phenotype.The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive.展开更多
Plant pathogens secrete various cell wall-degrading enzymes that compromise host cell wall integrity and facilitate pathogen invasion.This study identified VdGH7a,a glycoside hydrolase family 7(GH7)cellobiohydrolase f...Plant pathogens secrete various cell wall-degrading enzymes that compromise host cell wall integrity and facilitate pathogen invasion.This study identified VdGH7a,a glycoside hydrolase family 7(GH7)cellobiohydrolase from Verticillium dahliae,which demonstrated hydrolytic activity against 1,4-β-glucan.Notably,VdGH7a induced cell death in Nicotiana benthamiana when signal peptides were present,though this effect was inhibited by the carbohydrate-binding type-1(CBM1)protein domain.The deletion of VdGH7a substantially reduced V.dahliae pathogenicity in cotton plants,as demonstrated by the mutants’inability to penetrate cellophane membrane.These knockout mutants also exhibited reduced carbon source utilization capacity and increased sensitivity to osmotic and cell wall stresses.Through yeast two-hybrid screening,bi-molecular fluorescence complementation(BiFC),and luciferase complementation imaging(LCI),we identified that VdGH7a interacts with an osmotin-like protein(GhOLP1)in cotton.Virus-induced gene silencing of GhOLP1 resulted in decreased salicylic acid(SA)content and reduced resistance to V.dahliae in cotton,while heterologous overexpression of GhOLP1 in Arabidopsis enhanced both resistance and SA signaling pathway gene expression.These results reveal a virulence mechanism wherein the secreted protein VdGH7a from V.dahliae interacts with GhOLP1 to activate host immunity and contribute significantly to plant resistance against V.dahliae.展开更多
Major facilitator superfamily(MFS)transporters are secondary active membrane transporters that play an important role in solute interchange and energy metabolism.Peronophythora litchii causes the most destructive dise...Major facilitator superfamily(MFS)transporters are secondary active membrane transporters that play an important role in solute interchange and energy metabolism.Peronophythora litchii causes the most destructive disease on lichi,litchi downy blight.PlM90 was reported as a key oosporogenesis regulator.Here,we identified an MFS transporter gene PlMFS1,which is up-regulated during oospore formation at the late infection stage,while down-regulated in the PlM90 mutant.To investigate PlMFS1 function,we generated PlMFS1knockout mutants using CRISPR/Cas9-mediated genome editing technology.Compared with the wild-type strain SHS3,PlMFS1 deletion impaired mycelium growth,zoospore release,oospore production and pathogenicity.Furthermore,PlMFS1 deletion significantly affected P.litchii utilization of fructose,lactose and maltose,and may be the PlMFS1 mechanism involved in mycelial growth.PlMFS1 gene deletion also led to deceased laccase activity,laccase-encoding gene downregulation and impaired P.litchii pathogenicity.To our knowledge,this is the first report of an MFS transporter involved in sugar utilization,sexual reproduction,asexual reproduction and pathogenesis in oomycetes.展开更多
Dear Editor,The highly pathogenic avian influenza viruses(HPAIVs)are important epizootic and zoonotic pathogens that cause significant economic losses to the poultry industry and pose a serious risk to veterinary and ...Dear Editor,The highly pathogenic avian influenza viruses(HPAIVs)are important epizootic and zoonotic pathogens that cause significant economic losses to the poultry industry and pose a serious risk to veterinary and public health.Wild birds have been recognized as the primary reservoirs for influenza A virus,and some species show little sign of clinical disease or even can be asymptomatic during long distance carriers of the virus(Lycett et al.,2019).Since it was first discovered in 1959,the H5Nx HPAIVs have spread globally and cause outbreaks in wild birds,poultry and sporadic human and other mammalian infections(Lycett et al.,2019).Due to the reassortant events of diverse strains facilitated by migratory waterfowl,the clade 2.3.4.4 of H5Nx viruses acquiring neuraminidase(NA)gene from other low pathogenicity avian influenza viruses(LPAIVs)emerged in 2014 and gradually became the dominant sub-clade(Lee et al.,2017).展开更多
Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth,development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterize...Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth,development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterized.In this study, we identified a Glyco_transf_22 domain-containing protein, MoAlg9, and found that MoAlg9 islocalized to the endoplasmic reticulum(ER). Deletion of MoALG9 significantly affected conidial production, normalappressorium formation, responses to stressors, and pathogenicity of M. oryzae. We also found that the ΔMoalg9mutant was defective in glycogen utilization, appressorial penetration, and invasive growth in host cells. Moreover,we further demonstrated that MoALG9 regulates the transcription of several target genes involved in conidiation,appressorium formation, and cell wall integrity. In addition, we found that the Glyco_transf_22 domain is essentialfor normal MoAlg9 function and localization. We also provide evidence that MoAlg9 is involved in N-glycosylationpathway in M. oryzae. Taken together, these results show that MoAlg9 is important for conidiation, appressoriumformation, maintenance of cell wall integrity, and the pathogenesis of M. oryzae.展开更多
Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed...Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed that the growth rate,spore production and virulence of C.vitis significantly declined in alkaline pH,as well as the suppressive effect on secretion of hydrolytic enzymes.Transcriptomic and metabolomic analyses were used to investigate the responses of C.vitis to acidic(pH 5),neutral(pH 7)and alkaline environments(pH 9).We identified 728,1,780 and 3,386 differentially expressed genes(DEGs)at pH 5,pH 7 and pH 9,when compared with the host pH(pH 3),and 2,122 differently expressed metabolites(DEMs)in negative and positive ion mode.Most DEGs were involved in carbohydrate metabolic process,transmembrane transport,tricarboxylic acid cycle,peptide metabolic process,amide biosynthetic process,and organic acid metabolic process.In addition,metabolomic analysis revealed ABC transporters,indole alkaloid biosynthesis,diterpenoid biosynthesis,and carotenoid biosynthesis pathways in response to the pH change.Furthermore,we found that the aspartate synthesis metabolic route associated with the TCA cycle is a key limiting factor for the growth and development of C.vitis in alkaline environments,and aspartate supplementation enables C.vitis to grow in alkaline environments.Plant cell wall-degrading enzymes(PCWDEs)could contribute to the pathogenicity,when C.vitis infected at pH 3.Importantly,aflatrem biosynthesis in acidic environment might contribute to the virulence of C.vitis and has a risk of causing human health problems due to its acute neurotoxic effects.展开更多
文摘In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogen bacteria in food was the most hopeful system in these methods about bio-control. Controls of bacteriophage for each pathogen species and subspecies and determination of phage-host originality are important because efficient bio-control was achieved. Researches concentrated on some food-borne pathogen bacteria such as E. coli O157:H7, Campylobacter, Salmonella and Listeria. In a consequence of these studies made as in vitro and in vivo, first commercial production of phage which will be used in foods was made in Netherlands. Also, it has been informed that use of phage is cost-efficient alternative as compared with other preservatives. This review, discussed application of bacteriophages as bio-control agents in food and advantages and disadvantages about uses of bacteriophages by taking into account antimicrobial characteristics of them.
基金Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAD16B01)Tianjin Key Technology Research and Development Support Program (13ZCDNC01900)
基金supported by the Breeding Plan of Shandong Provincial Qingchuang Research Team(2019-135)Qingdao science and technology project 21-l-4-sf-6-nsh,China.
文摘Due to the increasing number of food-borne diseases,more attention is being paid to food safety.Food-borne pathogens are the main cause of food-borne diseases,which seriously endanger human health,so it is necessary to detect and control them.Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings,such as being time-consuming,laborious or requiring expensive instrumentation.Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties.New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity.In this review,we summarize the different characteristics of quantum dots synthesized by carbon,heavy metals and composite materials firstly.Then,attention is paid to the principles,advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens.Finally,the great potential of quantum dots in pathogen detection is summarized.
基金supported by the National Key Research and Development Program"Intergovernmental International Scientific and Technological Innovation Cooperation"(2021YFE0192100),ChinaThe Scientific Research Project of Education Department of Hunan Province(21B0736 and 19A192).
文摘Food-borne pathogens are an important challenge for the food industry.In this study,the possibility of using the previously designed and synthesized antimicrobial peptide HX-12C as a new food antimicrobial was evaluated.Bacteriostatic and bactericidal tests showed that HX-12C has strong,rapid and broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria.Outer-and inner-membrane permeabilization assays revealed that HX-12C killed food-borne pathogens by inducing membrane permeability.Further Scanning Electron Microscope(SEM)and Transmission Electron Microscope(TEM)also showed that HX-12C can distinctively act on the bacterial membrane leading to the leakage of cellular contents.Moreover,HX-12C also showed anti-biofilm ability in bacterial killing tests.In the food storage test,HX-12C exhibited significant antimicrobial function in raw pork and orange juice.Therefore,HX-12C has shown great potential as a new antimicrobial agent in food storage.
基金The author thanks the Scientific Research Projects Unit inÇukurova Univ.For their financial support(Research Project:FBA 2015-4369).
文摘Antimicrobial effects of carnosic acid,kaempferol and luteolin on biogenic amine(BA)production by five spoilage(Photobacterium damselae,Proteus mirabilis,Enterobacter cloacea,Pseudomonas luteola and Serratia liquefaciens)and five food-borne pathogenic bacteria(Staphylococcus aureus ATCC29213,Enterococcus faecalis ATCC29212,Escherichia coli ATCC25922,Salmonella Paratyphi A NCTC13 and Yersinia enterocolitica NCTC 11175)were investigated.The formation of ammonia(AMN),trimethylamine(TMA)and BAs by all bacterial strains were observed using ornithine decarboxylase broth.BAs,AMN,and TMA were determined by using high performance liquid chromatography(HPLC)method.The results showed that significant differences were observed(P≤0.05)in formation among spoilage and also food-borne bacteria.The impact of phenolic compounds on AMN,TMA and BAs production was dependent on bacterial strains.When total amount of cadaverine(CAD),putrescine(PUT),histamine(HIS)and tyramine(TYR)was considered,the phenolic compounds presented antimicrobial activity against fish spoliage bacteria and food-borne pathogens following the order;kaempferol>carnosic acid>luteolin.These phenolics have potential to be used as food preservatives.
文摘Food-producing animals are the major reservoirs for many foodborne pathogens such as Campylobacter species, non-Typhi serotypes of Salmonella enterica, Shiga toxin-producing strains of Escherichia coli, and Listeria monocytogenes. The zoonotic potential of foodborne pathogens and their ability to produce toxins causing diseases or even death are sufficient to recognize the seriousness of the situation. This manuscript reviews the evidence that links animals as vehicles of the foodborne pathogens Salmonella,Campylobacter, Shiga toxigenic E. coli, and L. monocytogenes, their impact, and their current status. We conclude that these pathogenic bacteria will continue causing outbreaks and deaths throughout the world, because no effective interventions have eliminated them from animals and food.
基金supported by the National Key Research and Development Project of China(2017YFC1600702)the Central Funds Guiding the Local Science and Technology Development of China(2020JH6/10500002).
文摘Cadmium accumulation in seafood has become a major concern for human health.Recently,there has been an increasing focus on the potential risks associated with food-borne fluorescent carbon dots(CDs)that are formed during the thermal processing of seafood.The co-occurrence of cadmium and CDs from cooked seafood become a common phenomenon and co-exposure of them to human has been an inevitable route during long-term seafood consuming.In addition,it has been widely recognized that CDs can be used as nanocarriers for metal ion chelation for their transport into organisms,thereby,they could influence the bioavailability of metal ion.While there have been numerous studies on the toxic effects of cadmium or CDs,none have explored the combined toxicity of food-borne CDs from clams(CCDs)and Cd^(2+).In this study,we investigated the single or co-exposure(combined exposure)of Cd^(2+)and CCDs on PC12 cells to investigate the combined toxicity of them.Our analysis of cell viability revealed that CCDs significantly augmented the cytotoxicity induced by Cd^(2+).More in-depth metabolomics and lipidomics investigation indicated that the combined exposure of Cd^(2+)and CCDs led to significant metabolic disorders,causing an antagonistic effect on energy metabolism,and a synergistic effect on amino acids and lipids metabolism.The disturbance in metabolomics and lipidomics was further supported by the disruption of mitochondrial membrane potential and the accumulation of reactive oxygen species following co-exposure.These findings provide new evidence that support the enhanced cytotoxicity of Cd^(2+)by the CCDs derived from the thermal processing of clams.This study also declares the necessary that prioritize the investigation of the potential impact of other thermal processing hazards originating from heat-processed foods on the toxicity of heavy metal ions.
基金supported by Joint Funds of the National Natural Science Foundation of China(Grant No.U21A20228).
文摘Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as single embryo and easy rooting.However,Citron C-05 was found to be highly susceptible to root rot during cultivation,with the specific pathogens previously unknown.In this study,four candidate fungal species were isolated from Citron C-05 roots.Sequence analysis of ITS,EF-1a,RPB1,and RPB2 identified two Fusarium solani strains,Rr-2 and Rr-4,as the candidates causing root rot in Citron C-05.Resistance tests showed these two pathogens increased root damage rate from 10.30%to 35.69%in Citron C-05,sour orange(Citrus aurantium),sweet orange(Citrus sinensis)and pummelo(Citrus grandis).F.solani exhibited the weak pathogenicity towards trifoliate orange(Poncirus trifoliata).DAB staining revealed none of reddish-brown precipitation in the four susceptible citrus germplasm after infection with F.solani,while trifoliate orange exhibited significant H2O2 accumulation.Trypan blue staining indicated increased cell death in the four susceptible citrus germplasm following infection with these two pathogens but not in trifoliate orange.These findings provide a comprehensive understanding of citrus root rot and support future research on the mechanisms of root rot resistance in citrus.
文摘Trichinosis is among the most common food-borne parasitic zoonoses in Thailand and many outbreaks are reported each year. This paper investigates the distribution of the disease in regions of north, north-east, central and south Thailand. Between the earliest recorded of outbreak of trichinosis in Mae Hong Son Province in 1962 and 2006, there have been 135 outbreaks involving 7340 patients and 97 deaths in Thailand. The highest number of cases, 557, was recorded in 1983. Most infected patients were in the 35-44 year age group, and the disease occurred more frequently in men than women during 1962-2003, with no significant sex difference during 2004-2006. Outbreaks were most common in the northern areas, especially in rural areas where raw and under-cooked pork and/or wild animals are eaten. Human infections occur annually in northern Thailand during communal feasts celebrating the Thai New Year. Trichinosis causes have been reported every year, supporting the need for planning education programs.
基金supported by the Key Research and Development Program of Shandong Province,China(No 2021CXGC010803)Pan’an County Chinese Medicine Industry Project(No.PZYF202103).
文摘Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
基金supported by the National KeyR&DProgramof China(2022YFF0710500)the National Natural Science Foundation of China(32172853 and 32373013)the Central Public-interest Scientific Institution Basal Research Fund,China(1610302022001).
文摘The Salmonella pathogenicity islands(SPIs) play crucial roles in the progression of Salmonella infection. In this study, we constructed an improved λ Red homologous recombination system to prepare single and triple deletion mutants of 3 prominent SPIs(SPI-1, 2, and 3), aiming at the impact of deletion on morphology, carbon source metabolism, adhesion and invasion capacity, in vivo colonization, and immune efficacy in chicks. Our examination revealed that the surface of the single deletion mutants(SM6ΔSPI1, ΔSPI2, and ΔSPI3) exhibited a more rugged texture and appeared to be enveloped in a layer of transparent colloid, whereas the morphology of the triple deletion mutant(SM6ΔSPI1&2&3) remained unaltered when compared to the parent strain. The carbon metabolic spectrum of the SPI mutants underwent profound alterations, with a notable and statistically significant modification observed in 30 out of 95 carbon sources, primarily carbohydrates(17 out of 30). Furthermore, the adhesion capacity of the 4 mutants to Caco-2 cells was significantly reduced when compared to that of the parent strain. Moreover,the invasion capacity of mutants SM6ΔSPI1 and SM6ΔSPI1&2&3 exhibited a substantial decrease, while it was enhanced to varying degrees for SM6ΔSPI3 and SM6ΔSPI2. Importantly, none of the 4 mutants induced any clinical symptoms in the chicks. However, they did transiently colonize the spleen and liver. Notably, the SM6ΔSPI1&2&3mutant was rapidly cleared from both the spleen and liver within 8 days post-infection and no notable pathological changes were observed in the organs. Additionally, when challenged, the mutants immunized groups displayed a significant increase in antibody levels and alterations in the CD3+CD4+ and CD3+CD8+ subpopulations, and the levels of IL-4 and IFN-γ cytokines in the SM6ΔSPI1&2&3 immunized chicken serum surpassed those of other groups.In summary, the successful construction of the 4 SPI mutants lays the groundwork for further exploration into the pathogenic(including metabolic) mechanisms of SPIs and the development of safe and effective live attenuated Salmonella vaccines or carriers.
基金funded by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,for supporting this work for work through grant number KFU242134.
文摘Coffee wilt represents one of the most devastating diseases of Arabica coffee(Coffea arabica L.)plantations in the primary coffee-producing regions.In this study,coffee trees manifesting wilt symptoms accompanied by the defoliation and drying of the whole tree were observed in the Jazan,El Baha,Najran,and Asir regions.The purpose of this investigation was to isolate and identify the Fusarium species recovered from symptomatic coffee trees.The developed fungi were initially characterized based on their morphological features followed by molecular phylogenetic multi-locus analysis of the combined sequences of ITS,TEF1-α,RPB2,and CaM.Twenty-five isolates were recovered from 28 samples.All fungal isolates were categorized morphologically under the genus Fusarium.Phylogenetic analysis positioned all the representative 15 isolates into one cluster grouping together with Neocosmospora falciformis(formerly F.falciforme)confirming their taxonomic position.Pathogenicity tests of the N.falciformis isolates were subsequently conducted on coffee seedlings,and the results revealed that all isolates induced wilt symptoms resembling those recorded in the field,and the incidence was 100%.The fungicide sensitivity test of seven investigated fungicides revealed that Maxim XL^(®) followed by Moncut^(®) exhibited the highest inhibitory effect against N.falciformis KSA 24-14,reaching 93.33%and 91.67%,respectively.To our knowledge,N.falciformis is a new causal pathogen of coffee wilt in Saudi Arabia.Remarkably,these results offer important insights for devising effective approaches to monitor and control such diseases.
基金National Science and Technology Infrastructure of China,Grant/Award Number:National Pathogen Resource Center-NPRC-32National Key Research and Development Program of China,Grant/Award Number:2023YFF0724800CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2021-I2M-1-035。
文摘Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune pressure and host factors.Understanding these changes is crucial for epidemic control and variant research.Methods:Human angiotensin-converting enzyme 2(hACE2)transgenic mice were in-tranasally challenged with the original strain WH-09 and the variants Delta,Beta,and Omicron BA.1,while BALB/c mice were challenged with Omicron subvariants BA.5,BF.7,and XBB.1.To compare the pathogenicity differences among variants,we con-ducted a comprehensive analysis that included clinical symptom observation,meas-urement of viral loads in the trachea and lungs,evaluation of pulmonary pathology,analysis of immune cell infiltration,and quantification of cytokine levels.Results:In hACE2 mice,the Beta variant caused significant weight loss,severe lung inflammation,increased inflammatory and chemotactic factor secretion,greater mac-rophage and neutrophil infiltration in the lungs,and higher viral loads with prolonged shedding duration.In contrast,BA.1 showed a significant reduction in pathogenicity.The BA.5,BF.7,and XBB.1 variants were less pathogenic than the WH-09,Beta,and Delta variants when infected in BALB/c mice.This was evidenced by reduced weight loss,diminished pulmonary pathology,decreased secretion of inflammatory factors and chemokines,reduced macrophage and neutrophil infiltration,as well as lower viral loads in both the trachea and lungs.Conclusion:In hACE2 mice,the Omicron variant demonstrated the lowest pathogenic-ity,while the Beta variant exhibited the highest.Pathogenicity of the Delta variant was comparable to the original WH-09 strain.Among BALB/c mice,Omicron subvari-ants BA.5,BF.7,and XBB.1 showed no statistically significant differences in virulence.
基金supported by the Joint Funds for the innovation of science and Technology,Fujian province(Grant number:2021Y9014).
文摘Electrochemiluminescence(ECL)technology has emerged as a pivotal tool in the field of pathogen detection due to its high sensitivity,strong specificity,operational convenience,and adaptability to complex biological samples.This paper systematically elucidates the fundamental mechanisms and classification characteristics of ECL technology,with a particular focus on its applications in detecting nucleic acids,proteins,metabolites,and drug-resistant mutants of pathogenic microorganisms.Through comparative analysis with traditional detection methods,the technological advantages and suitable scenarios of ECL are highlighted.Furthermore,this paper delves into the existing challenges of ECL technology in clinical applications,providing a theoretical basis for advancing its translational use in pathogen diagnostics.
基金Supported by National Natural Science Foundation of China,No.81770379 and 81470521.
文摘Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.HCM has a relatively wide phenotypic heterogeneity,varying from asymptomatic to sudden cardiac death,because of the many different mutations and pathogenic genes underlying it.Many studies have explored the clinical symptoms and prognosis of HCM,emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM.To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease.Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients.As sequencing technology advances,the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer.HCM is a widespread inherited disease with a highly variable clinical phenotype.The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive.
基金supported by the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-75)the Natural Science Foundation of Hainan Province,China(322QN398).
文摘Plant pathogens secrete various cell wall-degrading enzymes that compromise host cell wall integrity and facilitate pathogen invasion.This study identified VdGH7a,a glycoside hydrolase family 7(GH7)cellobiohydrolase from Verticillium dahliae,which demonstrated hydrolytic activity against 1,4-β-glucan.Notably,VdGH7a induced cell death in Nicotiana benthamiana when signal peptides were present,though this effect was inhibited by the carbohydrate-binding type-1(CBM1)protein domain.The deletion of VdGH7a substantially reduced V.dahliae pathogenicity in cotton plants,as demonstrated by the mutants’inability to penetrate cellophane membrane.These knockout mutants also exhibited reduced carbon source utilization capacity and increased sensitivity to osmotic and cell wall stresses.Through yeast two-hybrid screening,bi-molecular fluorescence complementation(BiFC),and luciferase complementation imaging(LCI),we identified that VdGH7a interacts with an osmotin-like protein(GhOLP1)in cotton.Virus-induced gene silencing of GhOLP1 resulted in decreased salicylic acid(SA)content and reduced resistance to V.dahliae in cotton,while heterologous overexpression of GhOLP1 in Arabidopsis enhanced both resistance and SA signaling pathway gene expression.These results reveal a virulence mechanism wherein the secreted protein VdGH7a from V.dahliae interacts with GhOLP1 to activate host immunity and contribute significantly to plant resistance against V.dahliae.
基金funded by the Natural Science Foundation of Guangdong Province,China(Grant Nos.2023A1515012617,2022A1515010458 and 2023A1515030267)Guangzhou Science&Technology Program(Grant No.202201010410)the earmarked fund for CARS-32。
文摘Major facilitator superfamily(MFS)transporters are secondary active membrane transporters that play an important role in solute interchange and energy metabolism.Peronophythora litchii causes the most destructive disease on lichi,litchi downy blight.PlM90 was reported as a key oosporogenesis regulator.Here,we identified an MFS transporter gene PlMFS1,which is up-regulated during oospore formation at the late infection stage,while down-regulated in the PlM90 mutant.To investigate PlMFS1 function,we generated PlMFS1knockout mutants using CRISPR/Cas9-mediated genome editing technology.Compared with the wild-type strain SHS3,PlMFS1 deletion impaired mycelium growth,zoospore release,oospore production and pathogenicity.Furthermore,PlMFS1 deletion significantly affected P.litchii utilization of fructose,lactose and maltose,and may be the PlMFS1 mechanism involved in mycelial growth.PlMFS1 gene deletion also led to deceased laccase activity,laccase-encoding gene downregulation and impaired P.litchii pathogenicity.To our knowledge,this is the first report of an MFS transporter involved in sugar utilization,sexual reproduction,asexual reproduction and pathogenesis in oomycetes.
基金supported by Zhejiang Province Science and Technology Cooperation Project of“Three Rural and Nine Parties”(grant number 2023SNJF059).
文摘Dear Editor,The highly pathogenic avian influenza viruses(HPAIVs)are important epizootic and zoonotic pathogens that cause significant economic losses to the poultry industry and pose a serious risk to veterinary and public health.Wild birds have been recognized as the primary reservoirs for influenza A virus,and some species show little sign of clinical disease or even can be asymptomatic during long distance carriers of the virus(Lycett et al.,2019).Since it was first discovered in 1959,the H5Nx HPAIVs have spread globally and cause outbreaks in wild birds,poultry and sporadic human and other mammalian infections(Lycett et al.,2019).Due to the reassortant events of diverse strains facilitated by migratory waterfowl,the clade 2.3.4.4 of H5Nx viruses acquiring neuraminidase(NA)gene from other low pathogenicity avian influenza viruses(LPAIVs)emerged in 2014 and gradually became the dominant sub-clade(Lee et al.,2017).
基金supported by the National Natural Science Foundation of China (32202253)the Natural Science Foundation of Anhui Higher Education Institutions, China (KJ2020A0102)the Talent Research Project of Anhui Agricultural University, China (rc342001)。
文摘Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth,development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterized.In this study, we identified a Glyco_transf_22 domain-containing protein, MoAlg9, and found that MoAlg9 islocalized to the endoplasmic reticulum(ER). Deletion of MoALG9 significantly affected conidial production, normalappressorium formation, responses to stressors, and pathogenicity of M. oryzae. We also found that the ΔMoalg9mutant was defective in glycogen utilization, appressorial penetration, and invasive growth in host cells. Moreover,we further demonstrated that MoALG9 regulates the transcription of several target genes involved in conidiation,appressorium formation, and cell wall integrity. In addition, we found that the Glyco_transf_22 domain is essentialfor normal MoAlg9 function and localization. We also provide evidence that MoAlg9 is involved in N-glycosylationpathway in M. oryzae. Taken together, these results show that MoAlg9 is important for conidiation, appressoriumformation, maintenance of cell wall integrity, and the pathogenesis of M. oryzae.
基金supported by the Shandong Provincial Natural Science Foundation,China(ZR2021QC131)the Shandong Province Key Research and Development Plan,China(2022TZXD001102)+1 种基金the Shandong Province Demonstration Project for Model Construction in Rural Revitalization Service,China(2022DXAL0226)the Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2023F15,CXGC2023A41,and CXGC2023A47)。
文摘Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed that the growth rate,spore production and virulence of C.vitis significantly declined in alkaline pH,as well as the suppressive effect on secretion of hydrolytic enzymes.Transcriptomic and metabolomic analyses were used to investigate the responses of C.vitis to acidic(pH 5),neutral(pH 7)and alkaline environments(pH 9).We identified 728,1,780 and 3,386 differentially expressed genes(DEGs)at pH 5,pH 7 and pH 9,when compared with the host pH(pH 3),and 2,122 differently expressed metabolites(DEMs)in negative and positive ion mode.Most DEGs were involved in carbohydrate metabolic process,transmembrane transport,tricarboxylic acid cycle,peptide metabolic process,amide biosynthetic process,and organic acid metabolic process.In addition,metabolomic analysis revealed ABC transporters,indole alkaloid biosynthesis,diterpenoid biosynthesis,and carotenoid biosynthesis pathways in response to the pH change.Furthermore,we found that the aspartate synthesis metabolic route associated with the TCA cycle is a key limiting factor for the growth and development of C.vitis in alkaline environments,and aspartate supplementation enables C.vitis to grow in alkaline environments.Plant cell wall-degrading enzymes(PCWDEs)could contribute to the pathogenicity,when C.vitis infected at pH 3.Importantly,aflatrem biosynthesis in acidic environment might contribute to the virulence of C.vitis and has a risk of causing human health problems due to its acute neurotoxic effects.