The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based pac...The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based packaging.Among the many types of biopolymers,chitosan is widely used and researched due to its non-toxic,antimicrobial,and antifungal properties.Chitosan is widely available since it is a compound extracted from seafood waste,especially shrimps and crabs.The biodegradability and biocompatibility of chitosan also showed good potential for various applications.These characteristics and propertiesmake chitosan an attractive biopolymer to be implemented as food packaging in films and coatings.Chitosan has been tested in maintaining and increasing the shelf life of food,especially seafood such as fish and shrimp,and post-harvest products such as fruits and vegetables.In addition to its various advantages,the properties and characteristics of chitosan need to be improved to produce optimal preservation.The properties and characteristics of chitosan are improved by adding various types of additive materials such as biopolymers,plant extracts,essential oils,and metal nanoparticles.Research shows that material additives and nanotechnology can improve the quality of chitosan-based food packaging for various types of food by enhancing mechanical properties,thermal stability,antimicrobial activity,and antioxidant activity.This review provides a perspective on the recent development and properties enhancement of chitosan composite with additives and nanotechnology,as well as this material’s challenges and prospects as food packaging.展开更多
The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(M...The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.展开更多
The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering r...The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.展开更多
Photoinitiators(PIs),as an important component of UV inks,are widely used in the printing of paper food packaging.Nevertheless,there is limited information concerning the identification of PIs in food packaging and th...Photoinitiators(PIs),as an important component of UV inks,are widely used in the printing of paper food packaging.Nevertheless,there is limited information concerning the identification of PIs in food packaging and their potential migration rules under natural storage condition.In this study,23 target PIs detected in paper food packaging were dominated by benzophenones(BZPs),followed by amine co-initiators(ACIs),thioxanthones(TXs)and phosphine oxides(POs).The concentration of ΣPIs ranged between 48.3 and 1.11×10^(5)ng/g.Meanwhile,the concentration ofΣPIs were found to be significantly higher in Corrugated paper compared to Polyethylene(PE)coated paper,Composite paper and White card paper.Benzophenone(BP)was found as the dominant PI congener in Corrugated paper,with the concentration ranging from 923-3.66×10^(4)ng/g.The migration quantity ofΣPIs increased in a time-dependent manner in the first 13 days and then eventually reached equilibrium.Low temperatures had a certain inhibitory effect on the migration of PIs from paper packaging to food.Under high exposure scenario,the EDIs of ΣPIs for children,adolescents,and adults were 31.4 ng/(kg bw·day),17.2 ng/(kg bw·day),and 14.4 ng/(kg bw·day),respectively,all of which did not exceed the reference dose,indicating that dietary intake of PIs does not pose any health risks to the human body.展开更多
The development of the bioplastics industry addresses critical issues such as environmental pollution and food safety concerns.However,the industrialization of bioplastics remains underdeveloped due to challenges such...The development of the bioplastics industry addresses critical issues such as environmental pollution and food safety concerns.However,the industrialization of bioplastics remains underdeveloped due to challenges such as high production costs and suboptimal material characteristics.To enhance these characteristics,this study investigates bioplastics reinforced with Nanocrystalline Cellulose(NCC)derived from Oil Palm Empty Fruit Bunches(OPEFB),incorporating dispersing agents.The research employs a Central Composite Design from the Response SurfaceMethodology(RSM)with two factors:the type of dispersing agent(KCl and NaCl)and the NCC concentration fromOPEFB(1%-5%),along with the dispersing agent concentration(0.5%-3%).The objective of this study is to analyze the characteristics of food packaging bioplastics composed of a sago starch matrix,NCC from OPEFB,and dispersing agents.The novelty of this research lies in the development of food packaging bioplastics using sago starch reinforced withNCC fromOPEFB and the addition of dispersing agents(KCl andNaCl).The results indicate that incorporating NCC from OPEFB and dispersing agents significantly enhances the bioplastic’s properties,meeting the JIS 2-1707 standards for food packaging plastic films.The bioplastic was tested as packaging for gelamai(a traditional food from West Sumatra)through an organoleptic evaluation.Consumer acceptance in terms of taste,smell,and color remained satisfactory up to the 14th day.Further research is required to scale up production using the optimal formulation identified in this study.Additionally,this bioplastic is recommended for use as packaging for various food products.展开更多
In the article“Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging”by Bandana Padhan et al.(Journal of Polymer Materials,2025,Vol.42,No.2,pp.411–433.doi:10.32604/jpm.2024.059156),originally publi...In the article“Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging”by Bandana Padhan et al.(Journal of Polymer Materials,2025,Vol.42,No.2,pp.411–433.doi:10.32604/jpm.2024.059156),originally published online on December 9,2024,and formally included in Vol.42,No.2(published on July 11,2025).展开更多
This study aims to the factors influencing consumer intention to purchase eco-friendly,small-packaged agricultural products using the Theory of Planned Behavior(TPB).With increasing demand for sustainable consumption,...This study aims to the factors influencing consumer intention to purchase eco-friendly,small-packaged agricultural products using the Theory of Planned Behavior(TPB).With increasing demand for sustainable consumption,eco-friendly food packaging has become a critical focus within the circular economy.This study was conducted in Seoul,South Korea,a key marketplace for consumer trends,and surveyed 200 respondents to examine key TPB components—attitude,subjective norms,and perceived behavioral control—along with additional factors shaping sustainable purchasing behavior.The findings indicate that perceived behavioral control is the predictor of purchase intention(β=0.510,p<0.001),followed by attitude(β=0.236,p<0.05)and subjective norms(β=0.199,p<0.05).Moreover,the results suggest that while social influences play a role,individuals who perceive fewer barriers and have a stronger personal attitude toward sustainability are more likely to adopt eco-friendly purchasing behaviors.These results highlight the importance of consumer autonomy and confidence in making eco-friendly choices,suggesting that increasing accessibility and affordability of sustainable packaging can drive adoption.Despite social influences,urban consumers prioritize personal values and perceived control over purchasing behavior.The study might contribute to sustainability literature by offering insights into eco-conscious consumer behavior and implications for marketing strategies that promote sustainable agricultural products.Future research should explore cross-cultural comparisons and additional psychological determinants to enhance the understanding of sustainable consumption patterns.展开更多
Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricat...Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricated using Ginkgo biloba essential oil(GBEO)as core material and chitosan and type B gelatin biopolymer as capsule mate-rials.These antibacterial microcapsules were then modified with green-synthesized Ag NPs,blended into the bio-polymer polylactic acid(PLA),and finally formed as films.Physicochemical properties and antibacterial activity against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)were evaluated.Results showed that the prepared antibacterial PLA films exhibited excellent antibacterial activity against foodborne pathogens.Its TVC exceeded the limit value of 7 log CFU/g at 7 days compared with the 5 days of pure PLA films.Therefore,these films can extend the shelf life of grass carp fillets by 2–3 days under refrigeration.展开更多
The molded pulp,a product of three-dimensional papermaking technology,is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal.Th...The molded pulp,a product of three-dimensional papermaking technology,is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal.The application of molded pulp for food packaging can replace or reduce the use of plastic food packaging.Researchers extract fibers from plants for the production of safe and hygienic molded pulp for food packaging,and they also study and enhance the qualities of molded pulp to broaden its use in the food industry.This paper reviews the sources and varieties of plant fiber used in molded pulp for food packaging,as well as research on the improvement and optimization of the performance of molded pulp products.Additionally,issues with molded pulp’s actual use for food packaging are reviewed,along with the potential for future research.This work can serve as a reference for molded pulp applications and research in the food industry in the future.展开更多
[Objectives]This study was conducted to detect the contents of heavy metal lead and chromium in food packaging bags.[Methods]The contents of heavy metal lead and chromium in food packaging bags were determined by micr...[Objectives]This study was conducted to detect the contents of heavy metal lead and chromium in food packaging bags.[Methods]The contents of heavy metal lead and chromium in food packaging bags were determined by microwave digestion-flame atomic absorption spectrophotometer.With concentrated nitric acid and 30%hydrogen peroxide solution as the digestion system,food packaging bags of different materials,plastic packaging bags and paper packaging bags,were ultrasonically digested and then determined for the contents of heavy metal lead and chromium by flame atomic absorption spectrophotometry.[Results]The determination results showed that the linear correlation coefficient of lead was 0.9967,and the linear correlation coefficient of chromium was 0.9977.The method has the characteristics of simplicity,high analysis speed and high sensitivity.[Conclusions]This study provides a theoretical basis for the safety of food packaging bags.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Increased environmental and health concerns over the use of plastic packaging or fluorine-containing coatings,in combination with increased market demand for products with a longer shelf life,make bio-based materials ...Increased environmental and health concerns over the use of plastic packaging or fluorine-containing coatings,in combination with increased market demand for products with a longer shelf life,make bio-based materials one of the most important research candidates for alternative paper packaging materials for oil resistance.These bio-based materials have excellent oxygen and oil barriers,which are critical for food packaging.Moreover,they are biodegradable,naturally renewable,and safe.In this artical,two main groups of bio-based oil repellents for paper food packaging,including polysaccharide-based biopolymers and protein-based biopolymers,are enumerated,and the advantages and weaknesses of bio-based oil repellents are discussed,and effective solutions are proposed.Finally,research status and prospects on the development of bio-based oil-resistant coatings for the food packaging industry are presented.展开更多
Starch-based nanomaterials have attracted global attention among researchers owing to their large specific surface areas(beneficial for increased nutrient loading)and abundant hydroxyl groups,distinguishing their phys...Starch-based nanomaterials have attracted global attention among researchers owing to their large specific surface areas(beneficial for increased nutrient loading)and abundant hydroxyl groups,distinguishing their physicochemical properties from traditional starch-based materials.this review comprehensively outlined the common types of starch-based nanomaterials and their construction methodologies,including acid and enzymatic hydrolysis,chemical precipitation,electrospinning,and ultrasonic crushing.the potential of these nanomaterials in the field of food applications is discussed.this review also detailed the construction approaches and applications of starch-based nanomaterials for encapsulating active substances in food nutrient and drug delivery.owing to their large specific surface area,excellent stability,and pH responsiveness,starch-based nanomaterials facilitate improved loading rates and precise delivery of sensitive and easily decomposed active substances.in addition,incorporating bioactive substances into food packaging films,prepared from starch-based nanomaterials,can enhance antibacterial and antioxidant capabilities.Furthermore,the infusion of functional components with color responses into these films enables intelligent monitoring of changes in food quality during storage and transportation.overall,this review provides contemporary insights into the functional delivery and food packaging applications of emerging microscale starch-based materials.展开更多
Polylactic acid,a biodegradable polymer derived from renewable resources,is increasingly used in food packaging due to its transparency,renewability,and food safety.However,its mechanical properties,heat resistance,an...Polylactic acid,a biodegradable polymer derived from renewable resources,is increasingly used in food packaging due to its transparency,renewability,and food safety.However,its mechanical properties,heat resistance,and barrier performance present significant challenges that limit its application.Currently,there is a lack of comprehensive literature addressing methods to optimize polylactic acid’s performance for various food packaging application.Hence,this review provides an overview of polylactic acid production processes,including the synthesis of lactic acid and lactide,as well as methods such as polycondensation and ring-opening polymerization.We critically examine the advantages and limitations of polylactic acid in various food packaging contexts,focusing on strategies to enhance its mechanical properties,barrier performance against oxygen and water vapor,surface hydrophobicity,thermal stability,and resistance to ultraviolet light.Furthermore,we summarize recent advancements in polylactic acid applications for food packaging,highlighting innovations in antioxidant,antimicrobial,and freshness indicator packaging.These developments underscore the significant potential of polylactic acid in the food packaging sector and offer valuable insights for future research directions.展开更多
The serious problems caused by extensive usage of petroleum-based plastic materials led to investigating the comprehensive studies and developing active food packaging materials.Even if the chitosan-based films are co...The serious problems caused by extensive usage of petroleum-based plastic materials led to investigating the comprehensive studies and developing active food packaging materials.Even if the chitosan-based films are considered an attractive source,they exhibit some practical difficulties in developing active food packaging applications.Hence,Ficus carica Linn leaves extract(FLE),with the features of its cheapness,easy accessibility and superoxide anion radical scavenging activity,was incorporated into chitosan(CS)film at various concentrations(2%-6%w/w).To the best of our knowledge,this was the first time that FLE was utilized as a bioactive substance incorporated into chitosan films to develop eco-friendly,biodegradable,active food packaging material.The results obtained revealed that FLE incorporation into chitosan films significantly improved the swelling,water solubility and opacity of neat chitosan films.FTIR and morphological analysis indicated that the films produced exhibited smooth structure with homogenous dispersion of FLE.In mechanically,the addition of FLE resulted in a significant reduction in tensile strength while the elasticity of the films was improved.Additionally,the antioxidant and biodegradability properties of neat chitosan films were enhanced significantly.It was concluded that CS-FLE films appeared to be a capable and enhanced option for synthetic polymer-based food packaging materials.Based on the analyses performed,further studies are suggested on the packaging application for various foods and to evaluate the possible interaction of packaging film materials with the compounds of the food products,to avoid possible negative effects.展开更多
This study developed an active and intelligent collagen-based packaging film with high strength for visually monitoring the freshness of fish.The results of scanning electron microscopy and atomic force microscopy sho...This study developed an active and intelligent collagen-based packaging film with high strength for visually monitoring the freshness of fish.The results of scanning electron microscopy and atomic force microscopy showed that the film based on cross-linked collagen/delphinidin catalyzed by laccase exhibited a denser layer structure and a rougher surface.The dry and wet tensile strengths of the laccase-catalyzed collagen/delphinidin film(Col/Dp-LA film)increased by 41.74 MPa and 13.13 MPa in comparison with that of the pure collagen film,respectively.Moreover,the Col/Dp-LA film presented good antioxidant and barrier properties demonstrated by the results of free radical scavenging rate,light transmission rate,and water vapor permeability.The intelligent collagen-based film was obtained by incorporating Vaccinium oxycoccus pigment into the Col/Dp-LA film,which could change color under different pH values.When applied to the preservation offish fillets,the film could release Dp to minimize oxidative rancidity and prolong the shelf life of the fish for 2 days.Meanwhile,the film showed visual color changes from purplish-red to greyish-blue after the fish spoilage.These results indicated that the collagen film treated with delphinidin,laccase,and Vaccinium oxycoccus pigment has potential application value in the field of active and intelligent food packaging.展开更多
Cellulose fiber-based food packaging papers with enhanced barrier and antibacterial properties were successfully fabricated by sequential deposition multilayers consisting of chitosan(CS)and carboxymethyl cellulose(CM...Cellulose fiber-based food packaging papers with enhanced barrier and antibacterial properties were successfully fabricated by sequential deposition multilayers consisting of chitosan(CS)and carboxymethyl cellulose(CMC)on paper surface.The formation of CS/CMC multilayers on paper surface was systematically characterized.The CS/CMC multilayers effectively improved not only the barrier properties of papers against grease,oil,water,air and water vapor,but also the mechanical properties of papers.Moreover,the CS/CMC multilayer-modified papers showed improved antibacterial activities against E.coli and S.aureus.A(CS/CMC)5 multilayer-modified paper exhibited the strongest antibacterial activity with growth inhibition rate of 95.8%against E.coli and 98.9%against S.aureus.No obvious cytotoxicity was detected for the obtained modified paper.Therefore,in consideration of its mechanical,barrier,antibacterial and safe performances,it is expected that the as-prepared cellulose fiber-based paper can be used as a promising material for food packaging.展开更多
Consumers prefer foods that are healthier with high quality and safety.Food packaging are de-manded to effectively extend the shelf-life,preserve the nutrients and decrease the microbial contamination during the trans...Consumers prefer foods that are healthier with high quality and safety.Food packaging are de-manded to effectively extend the shelf-life,preserve the nutrients and decrease the microbial contamination during the transport and storage of food.With the increasing concern on the envi-ronmental impacts caused by food packaging wastes,sustainable and green packaging are highly demanded to minimize the harmful effects of food packaging waste on the environment.Bio-based materials are derived from sustainable and renewable biomass,instead of finite petrochemicals.The applications of bio-based materials for food packaging are highlighted in this review.The emphasis is placed on the categories of related biobased materials,their characteristics and ad-vantages for food packaging,as well as the strategies used to improve their performances.Though a lot of trials have been done on biobased materials for food packaging,further attempts to im-prove their performances,understand the functioning mechanisms and develop greener methods for the production,processing and destiny of these bio-based materials are still highly needed for the future research.展开更多
Traditional food packaging films made of plastic have caused serious damage to the environment.Chitosan film is a potential substitute but it is weak in antioxidant activity.In this study,the extract and chitosan from...Traditional food packaging films made of plastic have caused serious damage to the environment.Chitosan film is a potential substitute but it is weak in antioxidant activity.In this study,the extract and chitosan from American cockroach were combined to produce a new environment-friendly chitosan film for food packaging.The chitosan film was easily degraded by water,avoiding accumulation in the environment.The addition of American cockroach extract improved the antioxidant activity of the chitosan film(up to 50 times higher than that of pure chitosan film when considering reducing capacity)and did not weaken its efficient antibacterial activity.In practical application,the packaged food was protected by the chitosan film from fast decay and oxidation for 15 days and 48 h,respectively.These results suggested that the new chitosan film possessed the potential for food packaging and improved the value of American cockroach.展开更多
Cellulose films made from‘green’solvent provide the possibility to mitigate environmental pollution caused by non-degradable plastic packaging.Herein,regenerated cellulose films were prepared from five wood pulps in...Cellulose films made from‘green’solvent provide the possibility to mitigate environmental pollution caused by non-degradable plastic packaging.Herein,regenerated cellulose films were prepared from five wood pulps in NaOH/urea aqueous solution,dried either at ambient conditions or by hot pressing,and tested as biodegradable packaging materials.The results revealed that different wood origins did not cause much difference in the structure of cellulose films.However,hot-pressing could not only efficiently remove water from wet films,but also significantly improve the tensile strength and water vapor barrier property of regenerated films.The RC-P-HP film had the tensile strength of 85.00±3.26 MPa,Young's modulus of 6.45±0.36 GPa,and water vapor permeability of 3.59±0.14×10^(−7) gm^(−1)h^(−1)Pa^(−1),and exhibited the similar capacity as the commercial plastic wrap during the preservation of cherry tomatoes for up to 16 days.Therefore,this study demonstrates a feasible strategy to fabricate wood cellulose films for biodegradable food packaging.展开更多
基金Penelitian Tesis Magister(PTM)Research Grant from Indonesian Government Kemdikbudristek with contract number 036/E5/PG.02.00.PL/2024.PPM1 2024 Research Grant from Faculty of Industrial Technology,ITB.
文摘The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based packaging.Among the many types of biopolymers,chitosan is widely used and researched due to its non-toxic,antimicrobial,and antifungal properties.Chitosan is widely available since it is a compound extracted from seafood waste,especially shrimps and crabs.The biodegradability and biocompatibility of chitosan also showed good potential for various applications.These characteristics and propertiesmake chitosan an attractive biopolymer to be implemented as food packaging in films and coatings.Chitosan has been tested in maintaining and increasing the shelf life of food,especially seafood such as fish and shrimp,and post-harvest products such as fruits and vegetables.In addition to its various advantages,the properties and characteristics of chitosan need to be improved to produce optimal preservation.The properties and characteristics of chitosan are improved by adding various types of additive materials such as biopolymers,plant extracts,essential oils,and metal nanoparticles.Research shows that material additives and nanotechnology can improve the quality of chitosan-based food packaging for various types of food by enhancing mechanical properties,thermal stability,antimicrobial activity,and antioxidant activity.This review provides a perspective on the recent development and properties enhancement of chitosan composite with additives and nanotechnology,as well as this material’s challenges and prospects as food packaging.
基金the University of Cartagena for funding through the Strengthening Project Acta 048-2023.
文摘The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.
文摘The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.
基金supported by the National Natural Science Foundation of China(Nos.22106169,22136006,and 22021003)。
文摘Photoinitiators(PIs),as an important component of UV inks,are widely used in the printing of paper food packaging.Nevertheless,there is limited information concerning the identification of PIs in food packaging and their potential migration rules under natural storage condition.In this study,23 target PIs detected in paper food packaging were dominated by benzophenones(BZPs),followed by amine co-initiators(ACIs),thioxanthones(TXs)and phosphine oxides(POs).The concentration of ΣPIs ranged between 48.3 and 1.11×10^(5)ng/g.Meanwhile,the concentration ofΣPIs were found to be significantly higher in Corrugated paper compared to Polyethylene(PE)coated paper,Composite paper and White card paper.Benzophenone(BP)was found as the dominant PI congener in Corrugated paper,with the concentration ranging from 923-3.66×10^(4)ng/g.The migration quantity ofΣPIs increased in a time-dependent manner in the first 13 days and then eventually reached equilibrium.Low temperatures had a certain inhibitory effect on the migration of PIs from paper packaging to food.Under high exposure scenario,the EDIs of ΣPIs for children,adolescents,and adults were 31.4 ng/(kg bw·day),17.2 ng/(kg bw·day),and 14.4 ng/(kg bw·day),respectively,all of which did not exceed the reference dose,indicating that dietary intake of PIs does not pose any health risks to the human body.
基金the Industrial Human Resource Development Agency,Ministry of Industry in 2023。
文摘The development of the bioplastics industry addresses critical issues such as environmental pollution and food safety concerns.However,the industrialization of bioplastics remains underdeveloped due to challenges such as high production costs and suboptimal material characteristics.To enhance these characteristics,this study investigates bioplastics reinforced with Nanocrystalline Cellulose(NCC)derived from Oil Palm Empty Fruit Bunches(OPEFB),incorporating dispersing agents.The research employs a Central Composite Design from the Response SurfaceMethodology(RSM)with two factors:the type of dispersing agent(KCl and NaCl)and the NCC concentration fromOPEFB(1%-5%),along with the dispersing agent concentration(0.5%-3%).The objective of this study is to analyze the characteristics of food packaging bioplastics composed of a sago starch matrix,NCC from OPEFB,and dispersing agents.The novelty of this research lies in the development of food packaging bioplastics using sago starch reinforced withNCC fromOPEFB and the addition of dispersing agents(KCl andNaCl).The results indicate that incorporating NCC from OPEFB and dispersing agents significantly enhances the bioplastic’s properties,meeting the JIS 2-1707 standards for food packaging plastic films.The bioplastic was tested as packaging for gelamai(a traditional food from West Sumatra)through an organoleptic evaluation.Consumer acceptance in terms of taste,smell,and color remained satisfactory up to the 14th day.Further research is required to scale up production using the optimal formulation identified in this study.Additionally,this bioplastic is recommended for use as packaging for various food products.
文摘In the article“Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging”by Bandana Padhan et al.(Journal of Polymer Materials,2025,Vol.42,No.2,pp.411–433.doi:10.32604/jpm.2024.059156),originally published online on December 9,2024,and formally included in Vol.42,No.2(published on July 11,2025).
文摘This study aims to the factors influencing consumer intention to purchase eco-friendly,small-packaged agricultural products using the Theory of Planned Behavior(TPB).With increasing demand for sustainable consumption,eco-friendly food packaging has become a critical focus within the circular economy.This study was conducted in Seoul,South Korea,a key marketplace for consumer trends,and surveyed 200 respondents to examine key TPB components—attitude,subjective norms,and perceived behavioral control—along with additional factors shaping sustainable purchasing behavior.The findings indicate that perceived behavioral control is the predictor of purchase intention(β=0.510,p<0.001),followed by attitude(β=0.236,p<0.05)and subjective norms(β=0.199,p<0.05).Moreover,the results suggest that while social influences play a role,individuals who perceive fewer barriers and have a stronger personal attitude toward sustainability are more likely to adopt eco-friendly purchasing behaviors.These results highlight the importance of consumer autonomy and confidence in making eco-friendly choices,suggesting that increasing accessibility and affordability of sustainable packaging can drive adoption.Despite social influences,urban consumers prioritize personal values and perceived control over purchasing behavior.The study might contribute to sustainability literature by offering insights into eco-conscious consumer behavior and implications for marketing strategies that promote sustainable agricultural products.Future research should explore cross-cultural comparisons and additional psychological determinants to enhance the understanding of sustainable consumption patterns.
基金supported by the National Key R&D Program of China(Grant No.2020YFD0900905).
文摘Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricated using Ginkgo biloba essential oil(GBEO)as core material and chitosan and type B gelatin biopolymer as capsule mate-rials.These antibacterial microcapsules were then modified with green-synthesized Ag NPs,blended into the bio-polymer polylactic acid(PLA),and finally formed as films.Physicochemical properties and antibacterial activity against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)were evaluated.Results showed that the prepared antibacterial PLA films exhibited excellent antibacterial activity against foodborne pathogens.Its TVC exceeded the limit value of 7 log CFU/g at 7 days compared with the 5 days of pure PLA films.Therefore,these films can extend the shelf life of grass carp fillets by 2–3 days under refrigeration.
基金supported by the Special Funds for Fundamental Scientific Research Funds of Central Universities(JUSRP21115)Independent Research Project Funding Project of Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology(FMZ201902).
文摘The molded pulp,a product of three-dimensional papermaking technology,is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal.The application of molded pulp for food packaging can replace or reduce the use of plastic food packaging.Researchers extract fibers from plants for the production of safe and hygienic molded pulp for food packaging,and they also study and enhance the qualities of molded pulp to broaden its use in the food industry.This paper reviews the sources and varieties of plant fiber used in molded pulp for food packaging,as well as research on the improvement and optimization of the performance of molded pulp products.Additionally,issues with molded pulp’s actual use for food packaging are reviewed,along with the potential for future research.This work can serve as a reference for molded pulp applications and research in the food industry in the future.
基金Supported by Special Scientific Research Project of Shaanxi Provincial Department of Education(16JK1275)。
文摘[Objectives]This study was conducted to detect the contents of heavy metal lead and chromium in food packaging bags.[Methods]The contents of heavy metal lead and chromium in food packaging bags were determined by microwave digestion-flame atomic absorption spectrophotometer.With concentrated nitric acid and 30%hydrogen peroxide solution as the digestion system,food packaging bags of different materials,plastic packaging bags and paper packaging bags,were ultrasonically digested and then determined for the contents of heavy metal lead and chromium by flame atomic absorption spectrophotometry.[Results]The determination results showed that the linear correlation coefficient of lead was 0.9967,and the linear correlation coefficient of chromium was 0.9977.The method has the characteristics of simplicity,high analysis speed and high sensitivity.[Conclusions]This study provides a theoretical basis for the safety of food packaging bags.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
文摘Increased environmental and health concerns over the use of plastic packaging or fluorine-containing coatings,in combination with increased market demand for products with a longer shelf life,make bio-based materials one of the most important research candidates for alternative paper packaging materials for oil resistance.These bio-based materials have excellent oxygen and oil barriers,which are critical for food packaging.Moreover,they are biodegradable,naturally renewable,and safe.In this artical,two main groups of bio-based oil repellents for paper food packaging,including polysaccharide-based biopolymers and protein-based biopolymers,are enumerated,and the advantages and weaknesses of bio-based oil repellents are discussed,and effective solutions are proposed.Finally,research status and prospects on the development of bio-based oil-resistant coatings for the food packaging industry are presented.
基金supported by the National Natural Science Foundation of China(32101897).
文摘Starch-based nanomaterials have attracted global attention among researchers owing to their large specific surface areas(beneficial for increased nutrient loading)and abundant hydroxyl groups,distinguishing their physicochemical properties from traditional starch-based materials.this review comprehensively outlined the common types of starch-based nanomaterials and their construction methodologies,including acid and enzymatic hydrolysis,chemical precipitation,electrospinning,and ultrasonic crushing.the potential of these nanomaterials in the field of food applications is discussed.this review also detailed the construction approaches and applications of starch-based nanomaterials for encapsulating active substances in food nutrient and drug delivery.owing to their large specific surface area,excellent stability,and pH responsiveness,starch-based nanomaterials facilitate improved loading rates and precise delivery of sensitive and easily decomposed active substances.in addition,incorporating bioactive substances into food packaging films,prepared from starch-based nanomaterials,can enhance antibacterial and antioxidant capabilities.Furthermore,the infusion of functional components with color responses into these films enables intelligent monitoring of changes in food quality during storage and transportation.overall,this review provides contemporary insights into the functional delivery and food packaging applications of emerging microscale starch-based materials.
基金supported by the“14th Five-Year Plan”National Key Research and Development Plan Project(Grant No.2023YFE0105500)support of the collaborative project titled‘Research and Application of High Transparent and High Strength Degradable Polylactic Acid(PLA)Membrane’(Contract No.2023-0166)with Wuhan Hongzhicai Packaging and Printing Company。
文摘Polylactic acid,a biodegradable polymer derived from renewable resources,is increasingly used in food packaging due to its transparency,renewability,and food safety.However,its mechanical properties,heat resistance,and barrier performance present significant challenges that limit its application.Currently,there is a lack of comprehensive literature addressing methods to optimize polylactic acid’s performance for various food packaging application.Hence,this review provides an overview of polylactic acid production processes,including the synthesis of lactic acid and lactide,as well as methods such as polycondensation and ring-opening polymerization.We critically examine the advantages and limitations of polylactic acid in various food packaging contexts,focusing on strategies to enhance its mechanical properties,barrier performance against oxygen and water vapor,surface hydrophobicity,thermal stability,and resistance to ultraviolet light.Furthermore,we summarize recent advancements in polylactic acid applications for food packaging,highlighting innovations in antioxidant,antimicrobial,and freshness indicator packaging.These developments underscore the significant potential of polylactic acid in the food packaging sector and offer valuable insights for future research directions.
文摘The serious problems caused by extensive usage of petroleum-based plastic materials led to investigating the comprehensive studies and developing active food packaging materials.Even if the chitosan-based films are considered an attractive source,they exhibit some practical difficulties in developing active food packaging applications.Hence,Ficus carica Linn leaves extract(FLE),with the features of its cheapness,easy accessibility and superoxide anion radical scavenging activity,was incorporated into chitosan(CS)film at various concentrations(2%-6%w/w).To the best of our knowledge,this was the first time that FLE was utilized as a bioactive substance incorporated into chitosan films to develop eco-friendly,biodegradable,active food packaging material.The results obtained revealed that FLE incorporation into chitosan films significantly improved the swelling,water solubility and opacity of neat chitosan films.FTIR and morphological analysis indicated that the films produced exhibited smooth structure with homogenous dispersion of FLE.In mechanically,the addition of FLE resulted in a significant reduction in tensile strength while the elasticity of the films was improved.Additionally,the antioxidant and biodegradability properties of neat chitosan films were enhanced significantly.It was concluded that CS-FLE films appeared to be a capable and enhanced option for synthetic polymer-based food packaging materials.Based on the analyses performed,further studies are suggested on the packaging application for various foods and to evaluate the possible interaction of packaging film materials with the compounds of the food products,to avoid possible negative effects.
基金supported by the National Natural Science Foundation of China(No.22078206).
文摘This study developed an active and intelligent collagen-based packaging film with high strength for visually monitoring the freshness of fish.The results of scanning electron microscopy and atomic force microscopy showed that the film based on cross-linked collagen/delphinidin catalyzed by laccase exhibited a denser layer structure and a rougher surface.The dry and wet tensile strengths of the laccase-catalyzed collagen/delphinidin film(Col/Dp-LA film)increased by 41.74 MPa and 13.13 MPa in comparison with that of the pure collagen film,respectively.Moreover,the Col/Dp-LA film presented good antioxidant and barrier properties demonstrated by the results of free radical scavenging rate,light transmission rate,and water vapor permeability.The intelligent collagen-based film was obtained by incorporating Vaccinium oxycoccus pigment into the Col/Dp-LA film,which could change color under different pH values.When applied to the preservation offish fillets,the film could release Dp to minimize oxidative rancidity and prolong the shelf life of the fish for 2 days.Meanwhile,the film showed visual color changes from purplish-red to greyish-blue after the fish spoilage.These results indicated that the collagen film treated with delphinidin,laccase,and Vaccinium oxycoccus pigment has potential application value in the field of active and intelligent food packaging.
基金supported by the National Natural Science Foundation of China(No.21965016 and No.21566020).
文摘Cellulose fiber-based food packaging papers with enhanced barrier and antibacterial properties were successfully fabricated by sequential deposition multilayers consisting of chitosan(CS)and carboxymethyl cellulose(CMC)on paper surface.The formation of CS/CMC multilayers on paper surface was systematically characterized.The CS/CMC multilayers effectively improved not only the barrier properties of papers against grease,oil,water,air and water vapor,but also the mechanical properties of papers.Moreover,the CS/CMC multilayer-modified papers showed improved antibacterial activities against E.coli and S.aureus.A(CS/CMC)5 multilayer-modified paper exhibited the strongest antibacterial activity with growth inhibition rate of 95.8%against E.coli and 98.9%against S.aureus.No obvious cytotoxicity was detected for the obtained modified paper.Therefore,in consideration of its mechanical,barrier,antibacterial and safe performances,it is expected that the as-prepared cellulose fiber-based paper can be used as a promising material for food packaging.
文摘Consumers prefer foods that are healthier with high quality and safety.Food packaging are de-manded to effectively extend the shelf-life,preserve the nutrients and decrease the microbial contamination during the transport and storage of food.With the increasing concern on the envi-ronmental impacts caused by food packaging wastes,sustainable and green packaging are highly demanded to minimize the harmful effects of food packaging waste on the environment.Bio-based materials are derived from sustainable and renewable biomass,instead of finite petrochemicals.The applications of bio-based materials for food packaging are highlighted in this review.The emphasis is placed on the categories of related biobased materials,their characteristics and ad-vantages for food packaging,as well as the strategies used to improve their performances.Though a lot of trials have been done on biobased materials for food packaging,further attempts to im-prove their performances,understand the functioning mechanisms and develop greener methods for the production,processing and destiny of these bio-based materials are still highly needed for the future research.
基金supported by the National Natural Science Foundation of China(Nos.31830084,32070466&31970440)“the Fundamental Research Funds for the Central Universities”,Nankai University(Nos.96172158,96173250&91822294).
文摘Traditional food packaging films made of plastic have caused serious damage to the environment.Chitosan film is a potential substitute but it is weak in antioxidant activity.In this study,the extract and chitosan from American cockroach were combined to produce a new environment-friendly chitosan film for food packaging.The chitosan film was easily degraded by water,avoiding accumulation in the environment.The addition of American cockroach extract improved the antioxidant activity of the chitosan film(up to 50 times higher than that of pure chitosan film when considering reducing capacity)and did not weaken its efficient antibacterial activity.In practical application,the packaged food was protected by the chitosan film from fast decay and oxidation for 15 days and 48 h,respectively.These results suggested that the new chitosan film possessed the potential for food packaging and improved the value of American cockroach.
基金financial support from the Fonds de Recherche du Quebec-Nature et Technologies(2021-PR-283095)Canada Foundation for Innovation(39173)+1 种基金Mitacs Accelerate(FR68649)We would like to acknowledge McGill University ECP3 Multi-Scale Imaging Facility for the image acquisition.
文摘Cellulose films made from‘green’solvent provide the possibility to mitigate environmental pollution caused by non-degradable plastic packaging.Herein,regenerated cellulose films were prepared from five wood pulps in NaOH/urea aqueous solution,dried either at ambient conditions or by hot pressing,and tested as biodegradable packaging materials.The results revealed that different wood origins did not cause much difference in the structure of cellulose films.However,hot-pressing could not only efficiently remove water from wet films,but also significantly improve the tensile strength and water vapor barrier property of regenerated films.The RC-P-HP film had the tensile strength of 85.00±3.26 MPa,Young's modulus of 6.45±0.36 GPa,and water vapor permeability of 3.59±0.14×10^(−7) gm^(−1)h^(−1)Pa^(−1),and exhibited the similar capacity as the commercial plastic wrap during the preservation of cherry tomatoes for up to 16 days.Therefore,this study demonstrates a feasible strategy to fabricate wood cellulose films for biodegradable food packaging.