This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa re...This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .展开更多
Sufficient food production for a growing human population has become an issue of global concern. Almost all of the world’s fertile land is currently in use and arable land areas cannot be expanded significantly. The ...Sufficient food production for a growing human population has become an issue of global concern. Almost all of the world’s fertile land is currently in use and arable land areas cannot be expanded significantly. The global challenge is to secure high and quality yields and to make agricultural production environmentally compatible. Insects have been hugely successful in terms of both species richness and abundance. Insects make up the most numerous group of organisms on earth, around 66% of all animal species, and being good dispersers and exploiters of virtually all types of organic matter, can be found almost everywhere, forming an important part of every ecosystem and are vital within our food supply chains performing valuable ecosystem services. Insects have been predominantly perceived as competitors in the race for survival. Herbivorous insects damage 18% of world agricultural production. Despite this damage less than 0.5 percentage of the total number of the known insect species are considered pests. Insect pests are created through the manipulation of habitats by humans, where crops are selected for larger size, higher yields, nutritious value, and are cultivated in monocultures for maximum production. This provides a highly favourable environment for the population increase of herbivorous insects. To ensure stable crop yields we need to change the management strategies of agroecosystems. We need to manage these systems in such a way that insects performing valuable ecosystem services are also incorporated into the system. This will ensure stable, resilient and sustainable systems in a constantly changing environment and will go a long way to ensure future food security. This paper examines the important role that insects generally play in ecosystems and how the services that insects provide can improve agricultural ecosystems.展开更多
Natural starters have been extensively used for many centuries to make many different fermented food products from different raw materials: Milk, meat, roots, vegetables, etc. The industrialisation of food production ...Natural starters have been extensively used for many centuries to make many different fermented food products from different raw materials: Milk, meat, roots, vegetables, etc. The industrialisation of food production at the end of the 19th century necessitated the use of regular selected starters to standardize the organoleptic characteristics of the final product. As a consequence, during the 20th century, there was a decline in the use of natural starters in Western countries except in the production of local cheeses or sourdough breads. The beginning of this new millennium has witnessed a deep change in consumer demand, in pursuit of quality, safety and pleasure. In this context, natural starters could, in the future, play an important role in the development of fermented products. However, food producers and researchers have first to cope with fundamental problems in the understanding of these complex ecosystems. The dynamic evolution of the microbial population inside the natural starter (its resilience, its genetic and physiological aptitudes) and the consequences on the product are still partially unknown. This document reviews a broad range of articles concerning the use of natural starters with a specific focus on cheeses and breads, and discusses the major stakes for local food production and the consumption of typical products.展开更多
Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a chan...Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a changing climate, biodiversity loss, human population growth and food production for this growing population. Agricultural intensification contributes significantly to biodiversity loss. The agricultural model for our current food production systems is mainly based on the Green Revolution, which promoted the cultivation of crops in extensive monoculture fields and intensified external inputs of agrochemicals. This model resulted in biodiversity loss, particularly in insect populations. A model based on ecological intensification as an alternative to agricultural intensification with minimized use of agro-inputs may slow the rate of biodiversity loss resulting in more sustainable agricultural ecosystems.展开更多
文摘This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .
文摘Sufficient food production for a growing human population has become an issue of global concern. Almost all of the world’s fertile land is currently in use and arable land areas cannot be expanded significantly. The global challenge is to secure high and quality yields and to make agricultural production environmentally compatible. Insects have been hugely successful in terms of both species richness and abundance. Insects make up the most numerous group of organisms on earth, around 66% of all animal species, and being good dispersers and exploiters of virtually all types of organic matter, can be found almost everywhere, forming an important part of every ecosystem and are vital within our food supply chains performing valuable ecosystem services. Insects have been predominantly perceived as competitors in the race for survival. Herbivorous insects damage 18% of world agricultural production. Despite this damage less than 0.5 percentage of the total number of the known insect species are considered pests. Insect pests are created through the manipulation of habitats by humans, where crops are selected for larger size, higher yields, nutritious value, and are cultivated in monocultures for maximum production. This provides a highly favourable environment for the population increase of herbivorous insects. To ensure stable crop yields we need to change the management strategies of agroecosystems. We need to manage these systems in such a way that insects performing valuable ecosystem services are also incorporated into the system. This will ensure stable, resilient and sustainable systems in a constantly changing environment and will go a long way to ensure future food security. This paper examines the important role that insects generally play in ecosystems and how the services that insects provide can improve agricultural ecosystems.
文摘Natural starters have been extensively used for many centuries to make many different fermented food products from different raw materials: Milk, meat, roots, vegetables, etc. The industrialisation of food production at the end of the 19th century necessitated the use of regular selected starters to standardize the organoleptic characteristics of the final product. As a consequence, during the 20th century, there was a decline in the use of natural starters in Western countries except in the production of local cheeses or sourdough breads. The beginning of this new millennium has witnessed a deep change in consumer demand, in pursuit of quality, safety and pleasure. In this context, natural starters could, in the future, play an important role in the development of fermented products. However, food producers and researchers have first to cope with fundamental problems in the understanding of these complex ecosystems. The dynamic evolution of the microbial population inside the natural starter (its resilience, its genetic and physiological aptitudes) and the consequences on the product are still partially unknown. This document reviews a broad range of articles concerning the use of natural starters with a specific focus on cheeses and breads, and discusses the major stakes for local food production and the consumption of typical products.
文摘Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a changing climate, biodiversity loss, human population growth and food production for this growing population. Agricultural intensification contributes significantly to biodiversity loss. The agricultural model for our current food production systems is mainly based on the Green Revolution, which promoted the cultivation of crops in extensive monoculture fields and intensified external inputs of agrochemicals. This model resulted in biodiversity loss, particularly in insect populations. A model based on ecological intensification as an alternative to agricultural intensification with minimized use of agro-inputs may slow the rate of biodiversity loss resulting in more sustainable agricultural ecosystems.