In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
The influences of airfoil thickness on the aerodynamic loading distribution and the hinge moments of folding wing aircraft are presented in this work.The traditional panel method shows deficiencies in the calculation ...The influences of airfoil thickness on the aerodynamic loading distribution and the hinge moments of folding wing aircraft are presented in this work.The traditional panel method shows deficiencies in the calculation of folding wing's hinge moments.Thus, a thickness correction strategy for the aerodynamic model with CFD results is proposed, and an aeroelastic flight simulation platform is constructed based on the secondary development of ADAMS.Based on the platform,the developed aerodynamic model is verified, then the flight-folding process of the folding wing aircraft is simulated, and the influences of airfoil thickness on the results are investigated.Results show that the developed aerodynamic model can effectively describe the thickness effect of the folding wing.Airfoil thickness, which cannot be considered by the panel method, has a great influence on the hinge moments during the folding process, and the thickness correction has great significance in the calculation of folding wing's hinge moments.展开更多
The flutter characteristics of folding control fins with freeplay are investigated by numer- ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay ...The flutter characteristics of folding control fins with freeplay are investigated by numer- ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe- lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.展开更多
This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape me...This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints.展开更多
The spatial constraints of aircraft have accelerated the development of multi-wing deployable mechanisms.These systems enable the rapid,sub-second deployment of multiple folding wings,which generate high-energy impact...The spatial constraints of aircraft have accelerated the development of multi-wing deployable mechanisms.These systems enable the rapid,sub-second deployment of multiple folding wings,which generate high-energy impacts upon locking-resulting in oscillations that can adversely affect aerodynamic performance.Despite their importance,the transient dynamic characteristics during deployment and locking remain insufficiently explored.This study presents an integrated dynamic model for a single-actuator,multi-wing deployable mechanism that accounts for joint clearances,component elasticity,and locking collisions.This model is used to analyze the influence of transient driving on the motion errors of multiple folding wings,the locking oscillation amplitude,and the complete stabilization time.Results indicate that as the driving force and transient deployment speed increase,all dynamic performance characteristics are notably affected.Specifically,raising the transient driving force from 3000 to 7000 N leads to a maximum increase of 60.8%in oscillation amplitude and 78.4%in stabilization time.By comparing the results of the prototype experiment with the theoretical model,it is found that the errors of the maximum locking oscillation amplitude and the complete stabilization time for the three groups of folding wings are all within the acceptable range,which verifies the theoretical model.These findings advance the theoretical understanding of transient deployment dynamics and locking oscillations in high-speed deployable mechanisms.展开更多
Due to elimination of horizontal and vertical tails,flying wing aircraft has poor longitudinal and directional dynamic characteristics.In addition,flying wing aircraft uses drag rudders for yaw control,which tends to ...Due to elimination of horizontal and vertical tails,flying wing aircraft has poor longitudinal and directional dynamic characteristics.In addition,flying wing aircraft uses drag rudders for yaw control,which tends to generate strong three-axis control coupling.To overcome these problems,a flight control law design method that couples the longitudinal axis with the lateraldirectional axes is proposed.First,the three-axis coupled control augmentation structure is specified.In the structure,a‘‘soft/hard"cross-connection method is developed for three-axis dynamic decoupling and longitudinal control response decoupling from the drag rudders;maneuvering turn angular rate estimation and subtraction are used in the yaw axis to improve the directional damping.Besides,feedforward control is adopted to improve the maneuverability and control decoupling performance.Then,detailed design methods for feedback and feedforward control parameters are established using eigenstructure assignment and model following technique.Finally,the proposed design method is evaluated and compared with conventional method by numeric simulations.The influences of control derivatives variation of drag rudders on the method are also analyzed.It is demonstrated that the method can effectively improve the dynamic characteristics of flying wing aircraft,especially the directional damping characteristics,and decouple the longitudinal responses from the drag rudders.展开更多
With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must b...With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures(lock-in-place(LIP),loss-of-effectiveness(LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.展开更多
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
基金co-supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11472133)。
文摘The influences of airfoil thickness on the aerodynamic loading distribution and the hinge moments of folding wing aircraft are presented in this work.The traditional panel method shows deficiencies in the calculation of folding wing's hinge moments.Thus, a thickness correction strategy for the aerodynamic model with CFD results is proposed, and an aeroelastic flight simulation platform is constructed based on the secondary development of ADAMS.Based on the platform,the developed aerodynamic model is verified, then the flight-folding process of the folding wing aircraft is simulated, and the influences of airfoil thickness on the results are investigated.Results show that the developed aerodynamic model can effectively describe the thickness effect of the folding wing.Airfoil thickness, which cannot be considered by the panel method, has a great influence on the hinge moments during the folding process, and the thickness correction has great significance in the calculation of folding wing's hinge moments.
文摘The flutter characteristics of folding control fins with freeplay are investigated by numer- ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe- lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.
基金Supported by National Natural Science Foundation of China(Grant No.12372156).
文摘This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints.
基金Supported by National Natural Science Foundation of China(Grant Nos.52192634,92471202,52105013,U2341237,T2388101).
文摘The spatial constraints of aircraft have accelerated the development of multi-wing deployable mechanisms.These systems enable the rapid,sub-second deployment of multiple folding wings,which generate high-energy impacts upon locking-resulting in oscillations that can adversely affect aerodynamic performance.Despite their importance,the transient dynamic characteristics during deployment and locking remain insufficiently explored.This study presents an integrated dynamic model for a single-actuator,multi-wing deployable mechanism that accounts for joint clearances,component elasticity,and locking collisions.This model is used to analyze the influence of transient driving on the motion errors of multiple folding wings,the locking oscillation amplitude,and the complete stabilization time.Results indicate that as the driving force and transient deployment speed increase,all dynamic performance characteristics are notably affected.Specifically,raising the transient driving force from 3000 to 7000 N leads to a maximum increase of 60.8%in oscillation amplitude and 78.4%in stabilization time.By comparing the results of the prototype experiment with the theoretical model,it is found that the errors of the maximum locking oscillation amplitude and the complete stabilization time for the three groups of folding wings are all within the acceptable range,which verifies the theoretical model.These findings advance the theoretical understanding of transient deployment dynamics and locking oscillations in high-speed deployable mechanisms.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.:YWF-19-BJ-J-322)。
文摘Due to elimination of horizontal and vertical tails,flying wing aircraft has poor longitudinal and directional dynamic characteristics.In addition,flying wing aircraft uses drag rudders for yaw control,which tends to generate strong three-axis control coupling.To overcome these problems,a flight control law design method that couples the longitudinal axis with the lateraldirectional axes is proposed.First,the three-axis coupled control augmentation structure is specified.In the structure,a‘‘soft/hard"cross-connection method is developed for three-axis dynamic decoupling and longitudinal control response decoupling from the drag rudders;maneuvering turn angular rate estimation and subtraction are used in the yaw axis to improve the directional damping.Besides,feedforward control is adopted to improve the maneuverability and control decoupling performance.Then,detailed design methods for feedback and feedforward control parameters are established using eigenstructure assignment and model following technique.Finally,the proposed design method is evaluated and compared with conventional method by numeric simulations.The influences of control derivatives variation of drag rudders on the method are also analyzed.It is demonstrated that the method can effectively improve the dynamic characteristics of flying wing aircraft,especially the directional damping characteristics,and decouple the longitudinal responses from the drag rudders.
文摘With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures(lock-in-place(LIP),loss-of-effectiveness(LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.