To overcome the drawbacks of the conventional foam technology used for dust suppression,including large pressure loss,high water pressure and low driving pressure,a new pneumatic foaming system is introduced.Then an o...To overcome the drawbacks of the conventional foam technology used for dust suppression,including large pressure loss,high water pressure and low driving pressure,a new pneumatic foaming system is introduced.Then an original design of foaming agent mixing device is proposed,and its performance is investigated and evaluated under different pressure compensations.Experimental results show that the maximum absorption amount increases by 2.9-6.7 times at a pressure compensation of 0.04-0.2 MPa compared with no pressure compensation.The pressure loss and pressure fluctuation both reduce significantly with increasing pressure compensation.The critical outlet pressure increases by30.4-240%.Field application indicates that the proposed mixing device ensures the reliable addition of foaming agent used for foam dust suppression.The effect of foam on dust suppression is remarkable,and the economic cost of foam is low.Therefore,there is reason to believe that the new mixing device will greatly promote foam technology to be widely used for suppressing dust in underground coal mines.展开更多
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i...The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.展开更多
Waste glass fibers were used as the main raw materials to prepare foamed glass-ceramics with 0-14 wt%H_(3)BO_(3)as a flux agent.The effects of H_(3)BO_(3)on the crystallization process,foaming behavior,and physical pr...Waste glass fibers were used as the main raw materials to prepare foamed glass-ceramics with 0-14 wt%H_(3)BO_(3)as a flux agent.The effects of H_(3)BO_(3)on the crystallization process,foaming behavior,and physical properties of CaO-MgO-Al_(2)O_(3)-SiO_(2)foamed glass-ceramics were investigated.The results showed that the main crystalline phase of the foamed glass-ceramics was anorthite with diopside as a minor crystalline phase,which exhibited a typical surface crystallization process.The addition of H_(3)BO_(3)modified the surface of glass powders and inhibited crystal precipitation obviously.The low melting point of H_(3)BO_(3)and the decrease of crystallinity jointly promoted the growth of pores,resulting in a reduction of bulk density and an increase in porosity.The compressive strength and thermal conductivity of the samples were linearly related to the bulk density.In particular,the sample added with 10 wt%H_(3)BO_(3)exhibited excellent properties,possessing a low coefficient of thermal conductivity 0.081 W/(m·K)and relatively high compressive strength 3.36 MPa.展开更多
Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleif...Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.展开更多
High-temperature and high-salt reservoirs are often accompanied by serious gas channeling in gas flooding,which will greatly affect the effect of gas injection development,so in-situ foaming of temperature-resistant a...High-temperature and high-salt reservoirs are often accompanied by serious gas channeling in gas flooding,which will greatly affect the effect of gas injection development,so in-situ foaming of temperature-resistant and salt-resistant foaming agents is commonly used to control gas channeling.The feasibility of the compound system of dodecyl hydroxyl sulfobetaine(HSB12)andα-olefin sulfonate(AOS)as foaming agent for sandstone reservoir was studied at 130℃and 22×10^(4)mg/L.The results showed that the foaming agent(HSB12 and AOS were compounded in a 6:1 mass ratio,in this article,this foaming agent is simply referred to as SA61)had good solubility in 22×10^(4)mg/L simulated formation water.Besides,the foaming volume of SA61 and HSB12 was similar,but the foam decay half-life of SA61was 10-25 times higher than that of HSB12.The foaming performance of SA61 on the surface of quartz sand remained above 90%of that before adsorption.The strong interaction between HSB12 and AOS in the compound system SA61 was demonstrated by surface rheological measurements and NMR studies of surfactants.The results of co re flow test showed that SA61 had better mobility control ability than HSB12under the same surfactant concentration.In addition,SA61 showed a selective mobility reduction in2005.30 and 632.00 mD cores.The above research results can guide the selection and application of foaming agent in clastic reservoir.展开更多
Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability...Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability of conventional PvDF is severely limited by its rapid crystallization kinetics and poor melt strength.Although ultra-high molecular weight PVDF(H-PVDF)theoretically offers prolonged melt elasticity favorable for foaming,the extremely high melt viscosity poses substantial processing challenges,and its foaming behavior has remained largely unexplored.To address these issues,this study proposes a novel fabrication strategy combining solvent casting with microcellular foaming to prepare H-PVDF foams.Dynamic mechanical analysis and differential scanning calorimetry reveal that extensive chain entanglements in H-PVDF impose constraints on crystallization and significantly enhance melt strength.By tuning the processing parameters,the distinctive foaming be-havior of H-PVDF under various conditions is systematically elucidated.Remarkably,a record-high expansion ratio of 55.6-fold is achieved,ac-companied by a highly uniform and fine cellular structure.The resulting H-PVDF foams exhibit a low thermal conductivity of 31.8 mW·m^(-1).K^(-1),while retaining excellent compressive strength,flame-retardancy,and hydrophobicity.These outstanding properties highlight the great potential of H-PVDF foams as the thermal insulation materials for applications in aerospace,energy infrastructure,and other extreme environments.展开更多
Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufactu...Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufacturing processes.In this study,we employed melt blending and supercritical carbon dioxide foaming to fabricate an ethylene-vinyl acetate copolymer(EVA)/low-density polyethylene(LDPE)/carbon nanotube(CNT)piezoresistive foam sensor.The cross-linking agent bis(tert-butyldioxyisopropyl)benzene and the conductive filler CNT were incorporated into the EVA/LDPE composite,successfully achieving a chemically cross-linked and physically entangled composite structure that significantly enhanced the storage modulus and complex viscosity.Additionally,the compressive strength of EVA/LDPE/CNT foam with 10 parts per hundred rubber(phr)CNT reached 1.37 MPa at 50%compression,marking a 340%increase compared to the 0.31 MPa of the CNT-free sample.Furthermore,the EVA/LDPE/CNT composite foams,which incorporated 10 phr CNT,were prepared under specific foaming conditions,resulting in an ultra-low density of 0.11 g/cm^(3) and a higher sensitivity,with a gauge factor of–2.3.The piezoresistive foam sensors developed in this work could accurately detect human motion,thereby expanding their applications in the field of piezoresistive foam sensors and providing an effective strategy for the advancement of high-performance piezoresistive foam sensors.展开更多
Polypropylene(PP)has a relatively low melt strength due to its linear structure,which seriously limits its supercritical CO_(2)foaming performance.Introducing long-chain branches(LCBs)via grafting can significantly en...Polypropylene(PP)has a relatively low melt strength due to its linear structure,which seriously limits its supercritical CO_(2)foaming performance.Introducing long-chain branches(LCBs)via grafting can significantly enhance its melt strength.However,the relationship between the LCB level of high melt strength polypropylene(HMSPP)and its foaming behavior remains unclear.In this study,a series of HMSPP with different LCB levels was prepared using vinyl polydimethylsiloxane(VS)of varying viscosities as grafting monomers to investigate this relationship.Rheological analysis showed that the increase in viscosity of VS led to higher LCB levels in HMSPP.The melt strength of HMSPP increases with the increase of LCB levels,reaching up to 0.62 N,which is 13 times higher than that of the raw material.Supercritical CO_(2)foaming results revealed that the expansion ratio of HMSPP first increased and then decreased with the increase of melt strength,reaching a maximum of 39.4 times.Combining experiments with simulations,the influence of LCB levels on the dissolution and diffusion behavior of CO_(2)in HMSPP was clarified.This study deepens the understanding of the relationship between LCB and the foaming behavior of HMSPP,providing valuable insights for designing HMSPP with optimized foaming properties.展开更多
Due to environmental concerns and the oil crisis,biodegradable polymer foams have garnered increasing attention.Among all biodegradable materials,Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(P(HB-co-HV))distinguishes ...Due to environmental concerns and the oil crisis,biodegradable polymer foams have garnered increasing attention.Among all biodegradable materials,Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(P(HB-co-HV))distinguishes itself with the advantage of being biodegradable in all natural environments.However,preparing P(HB-co-HV)foam with a fine cellular structure remains challenging.Herein,P(HBco-HV)foams with a double melting peak structure were developed.P(HB-co-HV)samples were first heated briefly near the melting temperature to melt most of the crystals,followed by saturation and foaming at a lower temperature(foaming temperature).P(HB-co-HV)foams with cell sizes of 7.1-30.0μm and relative densities ranging from 0.3 to 0.9 were prepared,and the foaming temperature window was as wide as 16℃.The effect of heat treatment temperature and foaming temperature on the crystallization and cell structure was investigated through DSC and SEM.It was found that the high-melting temperature crystals generated during the saturation step significantly improved the cell structure of P(HB-coHV),since these crystals can enhance the heterogeneous cell nucleation and hinder the cell growth during foaming.The low-melting temperature crystals were formed during foaming.In situ WAXD analysis during heating showed that the high-and low-melting peaks corresponded to HV-unit-excluded and HV-unit-included PHB crystals,respectively.展开更多
Background:Due to its high relevance in sports and rehabilitation,the exploration of interventions to further optimize flexibility becomes paramount.While stretching might be the most common way to enhance range of mo...Background:Due to its high relevance in sports and rehabilitation,the exploration of interventions to further optimize flexibility becomes paramount.While stretching might be the most common way to enhance range of motion,these increases could be optimized by imposing an additional activation of the muscle,such as mechanical vibratory stimulation.While several original articles provide promising findings,contradictory results on flexibility and underlying mechanisms(e.g.,stiffness),reasonable effect size(ES)pooling remains scarce.With this work we systematically reviewed the available literature to explore the possibility of potentiating flexibility,stiffness,and passive torque adaptations by superimposing mechanical vibration stimulation.Methods:A systematic search of 4 databases(Web of Science,MEDLINE,Scopus,and Cochrane Public Library)was conducted until December2023 to identify studies comparing mechanical vibratory interventions with passive controls or the same intervention without vibration(sham)on range of motion and passive muscle stiffness in acute(immediate effects after single session)and chronic conditions(multiple sessions over a period of time).ES pooling was conducted using robust variance estimation via R to account for multiple study outcomes.Potential moderators of effects were analyzed using meta regression.Results:Overall,65 studies(acute:1162 participants,chronic:788 participants)were included.There was moderate certainty of evidence for acute flexibility(ES=0.71,p<0.001)and stiffness(ES=-0.89,p=0.006)effects of mechanical vibration treatments vs.passive controls without meaningful results against the sham condition(flexibility:ES=0.20,p<0.001;stiffness:ES=-0.19,p=0.076).Similarly,moderate certainty of evidence was found for chronic vibration effects on flexibility(control:ES=0.64,p=0.043;sham:ES=0.65,p<0.001).Lack of studies and large outcome heterogeneity prevented ES pooling for underlying mechanisms.Conclusion:Vibration improved flexibility in acute and chronic interventions compared to the stand-alone intervention,which can possibly be attributed to an accumulated mechanical stimulus through vibration.However,studies on biological mechanisms are needed to explain flexibility and stiffness effects in response to specific vibration modalities and timing.展开更多
Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with ...Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with content of 0.6%-1.4% (mass fraction) was added to the molten pure aluminum and the foaming condition was controlled in a temperature range from 933 to 1 013 K, Ca amount of 1.5%-3.0% (mass fraction), stirring time of 0.5-2.5 min and holding time of 1.5-4.0 min to obtain homogeneous aluminum foams. The fabricated aluminum foams were characterized by XRD, SEM and Image-pro plus. The mechanical properties of the aluminum foams with different relative density were tested. The result indicates that the foaming agent (ZrH2) is suitable for the preparation of small aperture aluminum foams with average pore diameter of 1 mm. Inter-metallic compounds and Al2O3 have effect on the melt viscosity. The aluminum foams experience linear elastic, platforms and densification process and had a higher efficiency of energy absorption.展开更多
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ...Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.展开更多
The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa ...The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa m generated by this system presented superior viscous and wetting properties to water.A pendulum system was designed to measure yield stress of foam. The results pro ved the existence of yield stress of foam. And the increasing tendency of yield stress with gas fraction and bubble size has also been found out.展开更多
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ...In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.展开更多
With the growth of global protein demand and the development of plant-based foods,pea protein,as a low-allergenic,nutritionally balanced and environmentally friendly plant protein,has shown great potential in replacin...With the growth of global protein demand and the development of plant-based foods,pea protein,as a low-allergenic,nutritionally balanced and environmentally friendly plant protein,has shown great potential in replacing animal protein.Pea protein is mainly composed of globulin and albumin,with a protein content of 20%to 30%,and has a balanced amino acid composition,as well as being rich in minerals and dietary fiber.It also possesses good foaming,gelling,emulsifying and antioxidant functional properties.However,pea protein also has inherent defects that limit its application in the food industry.This article systematically reviews the extraction techniques,functional properties,modification methods and application fields of pea protein,and focuses on evaluating the effects of different extraction and modification strategies on protein yield and functional properties.Research shows that ultrasonic-assisted alkaline extraction can reduce solvent usage by 55%,shorten extraction time by 50%,and increase extraction rate by 12.51%;under optimized conditions,ultrafiltration membrane technology can achieve a protein purity of 91%.In terms of modification,ultrasonic treatment increases foaming capacity by 37.4%,and phenolic cross-linking increases gel strength from 3.0 kPa to 48 kPa.This article provides data support and theoretical reference for the efficient extraction and functional optimization of pea protein,and has promoting significance for its wide application in plant-based foods.展开更多
Traumatic spinal cord injury often leads to the disintegration of nerve cells and axons,resulting in a substantial accumulation of myelin debris that can persist for years.The abnormal buildup of myelin debris at site...Traumatic spinal cord injury often leads to the disintegration of nerve cells and axons,resulting in a substantial accumulation of myelin debris that can persist for years.The abnormal buildup of myelin debris at sites of injury greatly impedes nerve regeneration,making the clearance of debris within these microenvironments crucial for effective post-spinal cord injury repair.In this review,we comprehensively outline the mechanisms that promote the clearance of myelin debris and myelin metabolism and summarize their roles in spinal cord injury.First,we describe the composition and characteristics of myelin debris and explain its effects on the injury site.Next,we introduce the phagocytic cells involved in myelin debris clearance,including professional phagocytes(macrophages and microglia)and non-professional phagocytes(astrocytes and microvascular endothelial cells),as well as other cells that are also proposed to participate in phagocytosis.Finally,we focus on the pathways and associated targets that enhance myelin debris clearance by phagocytes and promote lipid metabolism following spinal cord injury.Our analysis indicates that myelin debris phagocytosis is not limited to monocyte-derived macrophages,but also involves microglia,astrocytes,and microvascular endothelial cells.By modulating the expression of genes related to phagocytosis and lipid metabolism,it is possible to modulate lipid metabolism disorders and influence inflammatory phenotypes,ultimately affecting the recovery of motor function following spinal cord injury.Additionally,therapies such as targeted mitochondrial transplantation in phagocytic cells,exosome therapy,and repeated trans-spinal magnetic stimulation can effectively enhance the removal of myelin debris,presenting promising potential for future applications.展开更多
Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usu...Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique.Herein,we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate(AM)as the precursor,and then acquire directional three-dimensional carbon-based foams through simple pyrolysis.The electrostatic interaction between AM and protein ensures well dispersion of WC_(1−x)nanoparticles on carbon frameworks.The content of WC_(1−x)nanoparticles can be rationally regulated by AM dosage,and it also affects the electromagnetic(EM)properties of final carbon-based foams.The optimized foam exhibits exceptional EM absorption performance,achieving a remarkable minimum reflection loss of−72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores.Such performance benefits from the synergistic effects of macroporous architecture and compositional design.Although there is a directional dependence of EM absorption,radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle.Moreover,COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.展开更多
A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modif...A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.展开更多
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures w...Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively.展开更多
Ceramic foams were prepared using red mud and fly ash as raw materials with sodium borate as sintering aid agent,starchand MnO2as foaming agent,respectively.The influence of the amount of starch or MnO2on the crystall...Ceramic foams were prepared using red mud and fly ash as raw materials with sodium borate as sintering aid agent,starchand MnO2as foaming agent,respectively.The influence of the amount of starch or MnO2on the crystalline phase,pore morphologyand physical–chemical porosities was studied.The results showed that the main crystal phases of samples with starch addition andMnO2addition were sodalite phase Na6(AlSiO4)6and Na8(SiAlO4)6MnO4,respectively.The SEM images showed that the variation ofporous structure was mainly dominated by the addition of foaming agent.With the increase of foaming agent,the samples exhibitedbetter comprehensive properties:bulk density of0.59?0.96g/cm3,porosity of41.82%?63.51%,water absorption of3.16%?9.17%,compressive strength of4.22?8.38MPa,flexural strength of2.44?5.82MPa,acid resistance of95.59%?99.60%,alkali resistance of99.82%?99.99%.Based on these properties,the ceramic foams can be used in building field.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51474216 and 51504249)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for theCentral Universities
文摘To overcome the drawbacks of the conventional foam technology used for dust suppression,including large pressure loss,high water pressure and low driving pressure,a new pneumatic foaming system is introduced.Then an original design of foaming agent mixing device is proposed,and its performance is investigated and evaluated under different pressure compensations.Experimental results show that the maximum absorption amount increases by 2.9-6.7 times at a pressure compensation of 0.04-0.2 MPa compared with no pressure compensation.The pressure loss and pressure fluctuation both reduce significantly with increasing pressure compensation.The critical outlet pressure increases by30.4-240%.Field application indicates that the proposed mixing device ensures the reliable addition of foaming agent used for foam dust suppression.The effect of foam on dust suppression is remarkable,and the economic cost of foam is low.Therefore,there is reason to believe that the new mixing device will greatly promote foam technology to be widely used for suppressing dust in underground coal mines.
基金Supported by the National Natural Science Foundation of China(22378181).
文摘The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.
基金Funded by Shandong Provincial Youth Innovation Team Development Plan of Colleges and Universities(No.2022KJ100)National Natural Science Foundation of China(No.52172019)。
文摘Waste glass fibers were used as the main raw materials to prepare foamed glass-ceramics with 0-14 wt%H_(3)BO_(3)as a flux agent.The effects of H_(3)BO_(3)on the crystallization process,foaming behavior,and physical properties of CaO-MgO-Al_(2)O_(3)-SiO_(2)foamed glass-ceramics were investigated.The results showed that the main crystalline phase of the foamed glass-ceramics was anorthite with diopside as a minor crystalline phase,which exhibited a typical surface crystallization process.The addition of H_(3)BO_(3)modified the surface of glass powders and inhibited crystal precipitation obviously.The low melting point of H_(3)BO_(3)and the decrease of crystallinity jointly promoted the growth of pores,resulting in a reduction of bulk density and an increase in porosity.The compressive strength and thermal conductivity of the samples were linearly related to the bulk density.In particular,the sample added with 10 wt%H_(3)BO_(3)exhibited excellent properties,possessing a low coefficient of thermal conductivity 0.081 W/(m·K)and relatively high compressive strength 3.36 MPa.
文摘Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.
基金financial support from the Major Scientific and Technological Projects of CNPC(Award No.ZD2019-183-007)。
文摘High-temperature and high-salt reservoirs are often accompanied by serious gas channeling in gas flooding,which will greatly affect the effect of gas injection development,so in-situ foaming of temperature-resistant and salt-resistant foaming agents is commonly used to control gas channeling.The feasibility of the compound system of dodecyl hydroxyl sulfobetaine(HSB12)andα-olefin sulfonate(AOS)as foaming agent for sandstone reservoir was studied at 130℃and 22×10^(4)mg/L.The results showed that the foaming agent(HSB12 and AOS were compounded in a 6:1 mass ratio,in this article,this foaming agent is simply referred to as SA61)had good solubility in 22×10^(4)mg/L simulated formation water.Besides,the foaming volume of SA61 and HSB12 was similar,but the foam decay half-life of SA61was 10-25 times higher than that of HSB12.The foaming performance of SA61 on the surface of quartz sand remained above 90%of that before adsorption.The strong interaction between HSB12 and AOS in the compound system SA61 was demonstrated by surface rheological measurements and NMR studies of surfactants.The results of co re flow test showed that SA61 had better mobility control ability than HSB12under the same surfactant concentration.In addition,SA61 showed a selective mobility reduction in2005.30 and 632.00 mD cores.The above research results can guide the selection and application of foaming agent in clastic reservoir.
基金supported by the National Natural Science Foundation of China(No.52175341)Shandong Provincial Natural Science Foundation(No.ZR2022JQ24)+2 种基金Funding Project of Jinan City's New Twenty Items for Colleges and Universities(No.202333038)Excellent Young Team Project of Central Universities(No.2023QNTD002)Qingdao Key Technology Research and Industrialization Demonstration Project(No.24-1-2-qljh-10-gx).
文摘Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability of conventional PvDF is severely limited by its rapid crystallization kinetics and poor melt strength.Although ultra-high molecular weight PVDF(H-PVDF)theoretically offers prolonged melt elasticity favorable for foaming,the extremely high melt viscosity poses substantial processing challenges,and its foaming behavior has remained largely unexplored.To address these issues,this study proposes a novel fabrication strategy combining solvent casting with microcellular foaming to prepare H-PVDF foams.Dynamic mechanical analysis and differential scanning calorimetry reveal that extensive chain entanglements in H-PVDF impose constraints on crystallization and significantly enhance melt strength.By tuning the processing parameters,the distinctive foaming be-havior of H-PVDF under various conditions is systematically elucidated.Remarkably,a record-high expansion ratio of 55.6-fold is achieved,ac-companied by a highly uniform and fine cellular structure.The resulting H-PVDF foams exhibit a low thermal conductivity of 31.8 mW·m^(-1).K^(-1),while retaining excellent compressive strength,flame-retardancy,and hydrophobicity.These outstanding properties highlight the great potential of H-PVDF foams as the thermal insulation materials for applications in aerospace,energy infrastructure,and other extreme environments.
基金supported by the National Natural Science Foundation of China(No.52473026)。
文摘Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufacturing processes.In this study,we employed melt blending and supercritical carbon dioxide foaming to fabricate an ethylene-vinyl acetate copolymer(EVA)/low-density polyethylene(LDPE)/carbon nanotube(CNT)piezoresistive foam sensor.The cross-linking agent bis(tert-butyldioxyisopropyl)benzene and the conductive filler CNT were incorporated into the EVA/LDPE composite,successfully achieving a chemically cross-linked and physically entangled composite structure that significantly enhanced the storage modulus and complex viscosity.Additionally,the compressive strength of EVA/LDPE/CNT foam with 10 parts per hundred rubber(phr)CNT reached 1.37 MPa at 50%compression,marking a 340%increase compared to the 0.31 MPa of the CNT-free sample.Furthermore,the EVA/LDPE/CNT composite foams,which incorporated 10 phr CNT,were prepared under specific foaming conditions,resulting in an ultra-low density of 0.11 g/cm^(3) and a higher sensitivity,with a gauge factor of–2.3.The piezoresistive foam sensors developed in this work could accurately detect human motion,thereby expanding their applications in the field of piezoresistive foam sensors and providing an effective strategy for the advancement of high-performance piezoresistive foam sensors.
基金the financial support of this work by the National Natural Science Foundation of China(Grant 21878089).
文摘Polypropylene(PP)has a relatively low melt strength due to its linear structure,which seriously limits its supercritical CO_(2)foaming performance.Introducing long-chain branches(LCBs)via grafting can significantly enhance its melt strength.However,the relationship between the LCB level of high melt strength polypropylene(HMSPP)and its foaming behavior remains unclear.In this study,a series of HMSPP with different LCB levels was prepared using vinyl polydimethylsiloxane(VS)of varying viscosities as grafting monomers to investigate this relationship.Rheological analysis showed that the increase in viscosity of VS led to higher LCB levels in HMSPP.The melt strength of HMSPP increases with the increase of LCB levels,reaching up to 0.62 N,which is 13 times higher than that of the raw material.Supercritical CO_(2)foaming results revealed that the expansion ratio of HMSPP first increased and then decreased with the increase of melt strength,reaching a maximum of 39.4 times.Combining experiments with simulations,the influence of LCB levels on the dissolution and diffusion behavior of CO_(2)in HMSPP was clarified.This study deepens the understanding of the relationship between LCB and the foaming behavior of HMSPP,providing valuable insights for designing HMSPP with optimized foaming properties.
基金financially supported by the National Natural Science Foundation of China(No.51973097)S&T Innovation 2035 Major Special Programme of Ningbo(No.2024Z105)。
文摘Due to environmental concerns and the oil crisis,biodegradable polymer foams have garnered increasing attention.Among all biodegradable materials,Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(P(HB-co-HV))distinguishes itself with the advantage of being biodegradable in all natural environments.However,preparing P(HB-co-HV)foam with a fine cellular structure remains challenging.Herein,P(HBco-HV)foams with a double melting peak structure were developed.P(HB-co-HV)samples were first heated briefly near the melting temperature to melt most of the crystals,followed by saturation and foaming at a lower temperature(foaming temperature).P(HB-co-HV)foams with cell sizes of 7.1-30.0μm and relative densities ranging from 0.3 to 0.9 were prepared,and the foaming temperature window was as wide as 16℃.The effect of heat treatment temperature and foaming temperature on the crystallization and cell structure was investigated through DSC and SEM.It was found that the high-melting temperature crystals generated during the saturation step significantly improved the cell structure of P(HB-coHV),since these crystals can enhance the heterogeneous cell nucleation and hinder the cell growth during foaming.The low-melting temperature crystals were formed during foaming.In situ WAXD analysis during heating showed that the high-and low-melting peaks corresponded to HV-unit-excluded and HV-unit-included PHB crystals,respectively.
文摘Background:Due to its high relevance in sports and rehabilitation,the exploration of interventions to further optimize flexibility becomes paramount.While stretching might be the most common way to enhance range of motion,these increases could be optimized by imposing an additional activation of the muscle,such as mechanical vibratory stimulation.While several original articles provide promising findings,contradictory results on flexibility and underlying mechanisms(e.g.,stiffness),reasonable effect size(ES)pooling remains scarce.With this work we systematically reviewed the available literature to explore the possibility of potentiating flexibility,stiffness,and passive torque adaptations by superimposing mechanical vibration stimulation.Methods:A systematic search of 4 databases(Web of Science,MEDLINE,Scopus,and Cochrane Public Library)was conducted until December2023 to identify studies comparing mechanical vibratory interventions with passive controls or the same intervention without vibration(sham)on range of motion and passive muscle stiffness in acute(immediate effects after single session)and chronic conditions(multiple sessions over a period of time).ES pooling was conducted using robust variance estimation via R to account for multiple study outcomes.Potential moderators of effects were analyzed using meta regression.Results:Overall,65 studies(acute:1162 participants,chronic:788 participants)were included.There was moderate certainty of evidence for acute flexibility(ES=0.71,p<0.001)and stiffness(ES=-0.89,p=0.006)effects of mechanical vibration treatments vs.passive controls without meaningful results against the sham condition(flexibility:ES=0.20,p<0.001;stiffness:ES=-0.19,p=0.076).Similarly,moderate certainty of evidence was found for chronic vibration effects on flexibility(control:ES=0.64,p=0.043;sham:ES=0.65,p<0.001).Lack of studies and large outcome heterogeneity prevented ES pooling for underlying mechanisms.Conclusion:Vibration improved flexibility in acute and chronic interventions compared to the stand-alone intervention,which can possibly be attributed to an accumulated mechanical stimulus through vibration.However,studies on biological mechanisms are needed to explain flexibility and stiffness effects in response to specific vibration modalities and timing.
基金Project (2004AA33G060) supported by the National High-tech Research and Development Program of China
文摘Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with content of 0.6%-1.4% (mass fraction) was added to the molten pure aluminum and the foaming condition was controlled in a temperature range from 933 to 1 013 K, Ca amount of 1.5%-3.0% (mass fraction), stirring time of 0.5-2.5 min and holding time of 1.5-4.0 min to obtain homogeneous aluminum foams. The fabricated aluminum foams were characterized by XRD, SEM and Image-pro plus. The mechanical properties of the aluminum foams with different relative density were tested. The result indicates that the foaming agent (ZrH2) is suitable for the preparation of small aperture aluminum foams with average pore diameter of 1 mm. Inter-metallic compounds and Al2O3 have effect on the melt viscosity. The aluminum foams experience linear elastic, platforms and densification process and had a higher efficiency of energy absorption.
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.
文摘The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa m generated by this system presented superior viscous and wetting properties to water.A pendulum system was designed to measure yield stress of foam. The results pro ved the existence of yield stress of foam. And the increasing tendency of yield stress with gas fraction and bubble size has also been found out.
基金Project(51371104)supported by the National Nature Science Foundation of China
文摘In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.
文摘With the growth of global protein demand and the development of plant-based foods,pea protein,as a low-allergenic,nutritionally balanced and environmentally friendly plant protein,has shown great potential in replacing animal protein.Pea protein is mainly composed of globulin and albumin,with a protein content of 20%to 30%,and has a balanced amino acid composition,as well as being rich in minerals and dietary fiber.It also possesses good foaming,gelling,emulsifying and antioxidant functional properties.However,pea protein also has inherent defects that limit its application in the food industry.This article systematically reviews the extraction techniques,functional properties,modification methods and application fields of pea protein,and focuses on evaluating the effects of different extraction and modification strategies on protein yield and functional properties.Research shows that ultrasonic-assisted alkaline extraction can reduce solvent usage by 55%,shorten extraction time by 50%,and increase extraction rate by 12.51%;under optimized conditions,ultrafiltration membrane technology can achieve a protein purity of 91%.In terms of modification,ultrasonic treatment increases foaming capacity by 37.4%,and phenolic cross-linking increases gel strength from 3.0 kPa to 48 kPa.This article provides data support and theoretical reference for the efficient extraction and functional optimization of pea protein,and has promoting significance for its wide application in plant-based foods.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WL)the International Cooperative Project of Talent Cultivation“Xinghai Project”at the China-Japan Union Hospital of Jilin University,No.XHLH202404(to WL)+1 种基金the Science and Technology Development Plan of Jilin Province,No.YDZJ202201ZYTS038(to WL)Jilin Provincial Finance Program,No.2022SCZ10(to WL)。
文摘Traumatic spinal cord injury often leads to the disintegration of nerve cells and axons,resulting in a substantial accumulation of myelin debris that can persist for years.The abnormal buildup of myelin debris at sites of injury greatly impedes nerve regeneration,making the clearance of debris within these microenvironments crucial for effective post-spinal cord injury repair.In this review,we comprehensively outline the mechanisms that promote the clearance of myelin debris and myelin metabolism and summarize their roles in spinal cord injury.First,we describe the composition and characteristics of myelin debris and explain its effects on the injury site.Next,we introduce the phagocytic cells involved in myelin debris clearance,including professional phagocytes(macrophages and microglia)and non-professional phagocytes(astrocytes and microvascular endothelial cells),as well as other cells that are also proposed to participate in phagocytosis.Finally,we focus on the pathways and associated targets that enhance myelin debris clearance by phagocytes and promote lipid metabolism following spinal cord injury.Our analysis indicates that myelin debris phagocytosis is not limited to monocyte-derived macrophages,but also involves microglia,astrocytes,and microvascular endothelial cells.By modulating the expression of genes related to phagocytosis and lipid metabolism,it is possible to modulate lipid metabolism disorders and influence inflammatory phenotypes,ultimately affecting the recovery of motor function following spinal cord injury.Additionally,therapies such as targeted mitochondrial transplantation in phagocytic cells,exosome therapy,and repeated trans-spinal magnetic stimulation can effectively enhance the removal of myelin debris,presenting promising potential for future applications.
基金financially supported by the National Natural Science Foundation of China(Nos.22475057 and No.52373262).
文摘Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique.Herein,we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate(AM)as the precursor,and then acquire directional three-dimensional carbon-based foams through simple pyrolysis.The electrostatic interaction between AM and protein ensures well dispersion of WC_(1−x)nanoparticles on carbon frameworks.The content of WC_(1−x)nanoparticles can be rationally regulated by AM dosage,and it also affects the electromagnetic(EM)properties of final carbon-based foams.The optimized foam exhibits exceptional EM absorption performance,achieving a remarkable minimum reflection loss of−72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores.Such performance benefits from the synergistic effects of macroporous architecture and compositional design.Although there is a directional dependence of EM absorption,radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle.Moreover,COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0501402)Science and Technology Services Network Program of Chinese Science Academy(STS Project)(No.KFJSTS-ZDTP-082)Chinese Academy of Sciences(Changchun Branch)(Nos.2020SYHZ0002 and No.2020SYHZ0047)。
文摘A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.
文摘Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively.
基金Project(K1003027-11) supported by the Key Project Foundation of Science and Technology Plans of Changsha,China
文摘Ceramic foams were prepared using red mud and fly ash as raw materials with sodium borate as sintering aid agent,starchand MnO2as foaming agent,respectively.The influence of the amount of starch or MnO2on the crystalline phase,pore morphologyand physical–chemical porosities was studied.The results showed that the main crystal phases of samples with starch addition andMnO2addition were sodalite phase Na6(AlSiO4)6and Na8(SiAlO4)6MnO4,respectively.The SEM images showed that the variation ofporous structure was mainly dominated by the addition of foaming agent.With the increase of foaming agent,the samples exhibitedbetter comprehensive properties:bulk density of0.59?0.96g/cm3,porosity of41.82%?63.51%,water absorption of3.16%?9.17%,compressive strength of4.22?8.38MPa,flexural strength of2.44?5.82MPa,acid resistance of95.59%?99.60%,alkali resistance of99.82%?99.99%.Based on these properties,the ceramic foams can be used in building field.