An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-t...An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.展开更多
In this paper, a clustering algorithm is proposed based on the high correlation among the overlapped field of views for the wireless multimedia sensor networks. Firstly, by calculating the area of the overlapped field...In this paper, a clustering algorithm is proposed based on the high correlation among the overlapped field of views for the wireless multimedia sensor networks. Firstly, by calculating the area of the overlapped field of views (FoVs) based on the gird method, node correlations have been obtained. Then, the algorithm utilizes the node correlations to partition the network region in which there are high correlation multimedia sensor nodes. Meanwhile, in order to minimize the energy consumption for transmitting images, the strategy of the cluster heads election is proposed based on the cost estimation, which consists of signal strength and residual energy as well as the node correlation. Simulation results show that the proposed algorithm can balance the energy consumption and extend the network lifetime effectively.展开更多
In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-...In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.展开更多
The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desi...In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desired impact time and meet the demand of FOV angle constraint.On basis of the framework of the proportional navigation guidance,an auxiliary control term is supplemented by the distributed deep deterministic policy gradient algorithm,in which the reward functions are developed to decrease the time-to-go error and improve the terminal guid-ance accuracy.The numerical simulation demonstrates that the missile governed by the presented deep reinforcement learning guidance law can hit the target successfully at appointed arrival time.展开更多
针对基于武器平台的体系对抗综合仿真系统中通信连通性功能的实际需求,给出了通信连通性模块的组成、功能及仿真流程,对其中的关键模型进行了分析研究,重点阐述了路径损耗计算和视野(FOV,Field Of View)判断模型。结合实例进行了仿真实...针对基于武器平台的体系对抗综合仿真系统中通信连通性功能的实际需求,给出了通信连通性模块的组成、功能及仿真流程,对其中的关键模型进行了分析研究,重点阐述了路径损耗计算和视野(FOV,Field Of View)判断模型。结合实例进行了仿真实验,仿真结果充分验证了模型和方法的有效性。通信连通性模块的研究开发为体系对抗仿真系统的实现奠定了基础,也可为电子信息系统及装备分析研究、研制与试验评估以及建模仿真等提供参考。展开更多
研究了一种多摄像机的视野(Field of View,FOV)分界线恢复方法,利用Harris角点检测和单应矩阵的方法完成摄像机视野分界线恢复。用Harris角点检测算法提取图像中角点特征;在有重叠区域图像间进行特征点匹配,再根据匹配点计算图像间的单...研究了一种多摄像机的视野(Field of View,FOV)分界线恢复方法,利用Harris角点检测和单应矩阵的方法完成摄像机视野分界线恢复。用Harris角点检测算法提取图像中角点特征;在有重叠区域图像间进行特征点匹配,再根据匹配点计算图像间的单应矩阵;最后由图像的边界点及图像间的单应矩阵计算摄像机的FOV分界线。该方法能准确恢复摄像机的视野分界线,具有准确性和鲁棒性。展开更多
基金The National Natural Science Foundation of China(No. 60972001 )the Science and Technology Plan of Suzhou City(No. SG201076)
文摘An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.
基金supported by the National Natural Science Foundation of China (60973139, 61170065, 61171053, 61003039, 61003236, 61103195)the Natural Science Foundation of Jiangsu Province (BK2011755)+10 种基金Scientific & Technological Support Project (Industry) of Jiangsu Province (BE2010197,BE2010198, BE2011844, BE2011189)Natural Science Key Fund for Colleges and Universities in Jiangsu Province (11KJA520001)the Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institutions(10KJB520013, 11KJB520014,11KJB520016)Scientific Research & Industry Promotion Project for Higher Education Institutions(JH2010-14, JHB2011-9)Postdoctoral Foundation (20100480048)Science & Technology Innovation Fund for higher education institutions of Jiangsu Province (CX10B-196Z,CX10B-200Z,CXZZ11-0405, CXZZ11-0406, CXZZ11_0409)Doctoral Fund of Ministry of Education of China(20103223120007, 20113223110002)key Laboratory Foundation of Information Technology processing of Jiangsu Province (KJS1022)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),(K93-9-2010-13)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (yx002001)Research Fund of Jiangsu Suqian College (2012ky17)
文摘In this paper, a clustering algorithm is proposed based on the high correlation among the overlapped field of views for the wireless multimedia sensor networks. Firstly, by calculating the area of the overlapped field of views (FoVs) based on the gird method, node correlations have been obtained. Then, the algorithm utilizes the node correlations to partition the network region in which there are high correlation multimedia sensor nodes. Meanwhile, in order to minimize the energy consumption for transmitting images, the strategy of the cluster heads election is proposed based on the cost estimation, which consists of signal strength and residual energy as well as the node correlation. Simulation results show that the proposed algorithm can balance the energy consumption and extend the network lifetime effectively.
基金supported by the National Natural Science Foundation of China(U21B2028).
文摘In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.
基金supported by the National Natural Science Foundation of China(62003021,62373304)Industry-University-Research Innovation Fund for Chinese Universities(2021ZYA02009)+2 种基金Shaanxi Qinchuangyuan High-level Innovation and Entrepreneurship Talent Project(OCYRCXM-2022-136)Shaanxi Association for Science and Technology Youth Talent Support Program(XXJS202218)the Fundamental Research Funds for the Central Universities(D5000210830).
文摘In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desired impact time and meet the demand of FOV angle constraint.On basis of the framework of the proportional navigation guidance,an auxiliary control term is supplemented by the distributed deep deterministic policy gradient algorithm,in which the reward functions are developed to decrease the time-to-go error and improve the terminal guid-ance accuracy.The numerical simulation demonstrates that the missile governed by the presented deep reinforcement learning guidance law can hit the target successfully at appointed arrival time.
文摘针对基于武器平台的体系对抗综合仿真系统中通信连通性功能的实际需求,给出了通信连通性模块的组成、功能及仿真流程,对其中的关键模型进行了分析研究,重点阐述了路径损耗计算和视野(FOV,Field Of View)判断模型。结合实例进行了仿真实验,仿真结果充分验证了模型和方法的有效性。通信连通性模块的研究开发为体系对抗仿真系统的实现奠定了基础,也可为电子信息系统及装备分析研究、研制与试验评估以及建模仿真等提供参考。
文摘研究了一种多摄像机的视野(Field of View,FOV)分界线恢复方法,利用Harris角点检测和单应矩阵的方法完成摄像机视野分界线恢复。用Harris角点检测算法提取图像中角点特征;在有重叠区域图像间进行特征点匹配,再根据匹配点计算图像间的单应矩阵;最后由图像的边界点及图像间的单应矩阵计算摄像机的FOV分界线。该方法能准确恢复摄像机的视野分界线,具有准确性和鲁棒性。
文摘运动目标正确交接是多摄像机视频监控中的关键,视野分界线是解决目标交接的有效工具。不需标定摄像机参数,提出了一种利用尺度不变特征变换(SIFT:scale-invariant freatures transform)及射影变换实现目标交接的算法。首先使用SIFT算法在不同视角拍摄的图像间自动生成匹配的特征点,由空间共面的特征点及其相应匹配点生成图像间的单应变换矩阵。然后由图像边界点及单应矩阵计算摄像机视野(FOV:field of view)分界线。最后利用目标位置信息及射影变换实现目标正确交接。实验结果表明本文的方法具有有效性和鲁棒性。